
The IPOL Demo Description Lines (DDL)

Compiled on Monday 13th January, 2025 at 17:55

This document contains the technical documentation for the Demo Descrip-
tion Lines (DDL) for the IPOL Demo System 2.0 for the real-time demos
generation from their textual description.

1

Contents

1 Introduction 3

2 The general section 3

3 The build section 4

4 The inputs section 6
4.1 image . 6
4.2 video . 7
4.3 data . 8
4.4 map . 8

5 The params section 12
5.1 range . 13
5.2 selection collapsed . 13
5.3 selection radio . 15
5.4 label . 15
5.5 checkbox . 16
5.6 numeric . 17
5.7 text . 18
5.8 textarea . 18

6 The run section 19

7 The archive section 20

8 The results section 22
8.1 gallery . 22
8.2 gallery video . 23
8.3 file download . 24
8.4 html text . 26
8.5 html file . 26
8.6 text file . 27
8.7 message . 28

2

1 Introduction

The Demo Description Lines (DDL) define an abstract syntax, written in
JSON (JavaScript Object Notation) format, that specifies the IPOL demos.
Their main objective is to simplify as much as possible the creation of demos
by describing them without the need of writing Python or HTML. This allows
fast demo editing in the journal. The following sections describe each of the
main keys of the DDL:

• general : general options (required);

• build : download and compile the source code (required);

• inputs : description of the inputs (optional);

• params : description of the parameters and user control (optional);

• run: script or binary which needs to be called for the execution, along
with its parameters (required);

• archive: which parameters and files will be stored in the archive (op-
tional);

• results : which elements will be displayed as results (required).

The IPOL control panel provides a JSON editor with a simple validator.
Most of the syntax errors are detected in real time and reported by this
graphical tool.

2 The general section

The general section describes global information about the demo. It is a set
of (key, value) pairs, described in the following table. The column req refers
to a required field. This type of tables will be used in all the sections of this
document.

key description req

demo title Title of the demo. no
description Description to be shown at the beginning

of the demo page. It contains HTML or
plain text as a single string.

no

3

input description Description of the inputs. It contains
HTML as a single string or as an array of
string that will be concatenated and
separated with spaces.

no

param description Description for the parameters. It contains
HTML code as a single string or as an
array of string that will be concatenated
and separated with spaces.

no

xlink article Link to the article webpage no
requirements It specifies particular requirements needed

for the execution of the demo, separated
by commas. e.g. Matlab.

no

custom js It allows to give the URL of a custom
Javascript file. This script contains extra
JS code that allows to personalize the
interaction and look of the front-end. It
should only be used in very special cases
there there is not any other alternative
than overwriting the default behavior or
look.

no

timeout It specifies maximum time in seconds
allows to execute the algorithm. If the
execution takes longer than the specified
time the system stops the exection.

no

Table 1: Fields in the general section.

3 The build section

The build section is a set of one or more sets, each one providing information
to obtain and compile the source codes needed for a given demo. If the demo
needs to compile several files from different links, the build sets must be
indexed as build1, build2,..., buildn being n the total number of builds (see
the example below). It is mandatory to write at least build1. If a demo needs
to make use of a python package in order to execute the user will have to
specify the requirements.txt file location inside the source binary compressed
file. Three steps are needed to build a demo:

• Download the original sources codes (with optional userid and password
for private demos);

4

• Build the executables after the download;

• Copy the needed files in a run context to execute the demo.

key description req

url Link to download the source codes as a
compressed file.

yes

username Username for private demos. no
password Password for private demos. no
construct Shell command needed to compile the

downloaded source code.
no

move List of files needed to execute the demo
separated with commas (see example below)

yes

virtualenv Creates a python 3 virtualenv to install any
needed python package inside the bin folder.

no

Table 2: Build fields

Example: In this case, the demo needs to compile from two different com-
pressed files. The DDL uses the move statement to copy the obtained files
after the compilation into a run context.

1 "build": {
2 "build1": {
3 "url": "http://www.ipol.im/pub/art/2014/82/

sift_anatomy_20141201.zip",

4 "construct": "cd sift_anatomy_20141201 && make",

5 "move": "sift_anatomy_20141201/bin/sift_cli,

sift_anatomy_20141201/bin/match_cli"

6 },
7 "build2":{
8 "url": "http://dev.ipol.im/~ monasse/orthoPose_1.0.tar

.gz",

9 "construct": "matlab -nodisplay -nosplash -nodesktop

-r \"cd orthoPose_1.0/; mcc -m mainPoseEstimation.m -a lib

/; exit ;\"",

10 "move": "orthoPose_1.0/mainPoseEstimation, orthoPose_

1.0/run_mainPoseEstimation.sh"

11 "virtualenv": "sift_anatomy_20141201/requirements.txt

"

12 }
13 }

5

4 The inputs section

The inputs section describes the characteristics of the input data for the
algorithm.

4.1 image

key description req

type type of the input: image yes
description Short name or description. This is used by

the web interface.
no

max pixels This value sets the maximum number of
pixels allowed for the input. If the size of the
image is over this the limit it will be resized.
The value can be a number or an arithmetic
expression (ex: “1000*1000” = 1 Mpx).

yes

max weight Maximum weight (in bytes) of an input file.
This prevents uploading too large files. The
value can be a number or an arithmetic
expression (ex: “100*1024*1024”= 100 Mb).

no

dtype Final format for the image. Some examples:
• 1x8i : gray, unsigned integer 8 bits;
• 3x8i : color, RGB unsigned integer 8
bits;

• 1x16i : gray, unsigned integer 16 bits;
• 3x16i : color, RGB unsigned integer 16
bits.

yes

ext input extension (ie. file format) yes
forbid preprocess Must be a boolean value. Forbids any

pre-processing of the input data. Submitted
image is kept as-is. Used by algorithms like
noise estimation or modification detection,
where re-sampling will affect results. If a
processing is needed according to the
expected properties, an error message will
be displayed to the user. This will also
remove the crop feature from the interface.

no

control String to include an interactive control.
Possible values are ”mask”, ”dots” and
”lines” each for a different kind of mask
drawing behaviour.

no

6

Table 3: Fields for an image as input.

4.2 video

key description req

type type of the input: video yes
description Short name or description. This is used by

the web interface.
no

as frames Boolean value. The input video will be
converted to png images for each frame
according to the max frames field. Frames
will be stored in a temporal folder inside the
execution directory with the name. (ex:
./input 0/frame 000.png)

no

max pixels This value sets the maximum number of
pixels allowed for the input video per frame.
If the size of the input is over, the video
frames will be resized. The value can be a
number or an arithmetic expression (ex:
“1000*1000” = 1 Mpx).

yes

max frames Maximum number of frames after
conversion, either as frames or video.

yes

max weight Maximum weight (in bytes) of an input file.
This prevents uploading too large files. The
value can be a number or an arithmetic
expression (ex: “100*1024*1024”= 100 Mb).

no

forbid preprocess Forbids any pre-processing of the input data
by the IPOL system. Submitted video is
kept as-is. Used by algorithms like
noise-estimation or modification detection,
where re-sampling will affect results.If a
processing is needed according to the
expected properties, an error message will
be displayed to the user.

no

Table 4: Fields for a video as input.

7

4.3 data

The data type is used when the input type is other than an image or a video.
Submitted data is kept as it is. The extension of your data file should be
defined in the ”ext” column.

key description req

type type of the input: data yes
description Short name or description. This is used by

the web interface.
no

max weight Maximum weight (in bytes) of an input file.
This prevents uploading too large files. The
value can be a number or an arithmetic
expression (ex: “100*1024*1024”= 100 Mb).

no

ext input extension (ie. file format, eg: .txt,
.tiff)

yes

Table 5: Fields for the data as input.

Example: An example of the data input for a demo is shown below. An
input file with the .txt format is required in this case.

1 "inputs": [

2 {
3 "description": "Text file containing the curve points",

4 "max_weight": 524288000,

5 "ext": ".txt",

6 "required": true,

7 "type": "data"

8 }
9]

4.4 map

The map type the interface makes the demo show a map of the Earth where
the user can drawn one or more polygons interactively. The selection is
passed to the demo’s code as a list of GeoJSON features containing geometric
coordinates.

Figure 1 shows the control and its key elements. To draw a polygon there is a
toolbox (1) which allows to start drawing a polygon and to remove completely
the last one. Click on the upper icon to start drawing and click on the map

8

Figure 1: The IPOL’s map interface. 1) The controls to draw and remove
polygons, 2) A polygon already draw, 3) A polygon being drawn, and 4) the
information about the current polygon.

to add as many vertices as needed. You can also start adding vertices by
clicking the right button of the mouse. When done, click the right button
of the mouse. After that, the polygon will appear as finished (2). You can
drawn more than one polygon, if needed. After finishing with the first, you
can draw a second one (3). The information about the current polygon is
show above (4).

The map is an interactive 3D projection. You can move around and change
the location using the mouse and dragging with the left button, or using the
keyboard cursors. With the right button of the mouse you can rotate the
map and change the orientation of the camera. The zoom can be adjusted
with the wheel of the mouse or with ’+’/’-’ in the keyboard.

The demo will receive a GeoJSON file containing the coordinates as a list of
geometric features. For example, a selection made of two polygons of three
and four vertices would be encoded as follows:

1 {
2 "type": "FeatureCollection",

3 "features": [

4 {
5 "id": "1a3e0b6db723596db6da77b80ea0904f",

6 "type": "Feature",

7 "properties": {},
8 "geometry": {
9 "coordinates": [

9

10 [

11 [

12 -3.69022875121982,

13 40.41938883192799

14],

15 [

16 -3.6927607565289122,

17 40.41605617841688

18],

19 [

20 -3.6802294760118457,

21 40.41563141659978

22],

23 [

24 -3.69022875121982,

25 40.41938883192799

26]

27]

28],

29 "type": "Polygon"

30 }
31 },
32 {
33 "id": "ca0e17328f3186e57d84fd8c535f6ab5",

34 "type": "Feature",

35 "properties": {},
36 "geometry": {
37 "coordinates": [

38 [

39 [

40 -3.7089827566515794,

41 40.42069570981127

42],

43 [

44 -3.695464423216549,

45 40.41857202035922

46],

47 [

48 -3.70220213226159,

49 40.4154026975869

50],

51 [

52 -3.712544730223499,

53 40.417526487080124

54],

55 [

56 -3.7089827566515794,

57 40.42069570981127

58]

10

59]

60],

61 "type": "Polygon"

62 }
63 }
64]

65 }

Note that a polygon of N vertices is encoded as a list of N + 1 coordinates,
where the first equals the last. This is the GIS standard to represent a
topologically closed curve.

Here it follows an example to read the GeoJSON file in Python:

#!/ usr /bin /env python3
2 # −∗− coding : UTF−8 −∗−

4 import j son
import argparse

6

de f p r i n t po lygons (polygons) :
8 ’ ’ ’

Pr int the in fo rmat ion o f g iven polygons
10 ’ ’ ’

i f not polygons :
12 pr in t (”No polygons were drawn in the map”)

re turn
14

pr in t (f ”{ l en (polygons) } polygon (s) were drawn in the
map : ”)

16 f o r polygon in polygons :
p r i n t (f ”\ t− polygon with { l en (polygon) } v e r t i c e s : ”)

18 f o r coord in polygon :
p r i n t (f ”\ t \ t { coord }”)

20

par s e r = argparse . ArgumentParser (d e s c r i p t i o n=’GeoJSON
example . ’)

22 par s e r . add argument (’−−j s on ’ , type=str , he lp=’ Input
f i l ename ’ , d e f au l t=’ input 0 . j son ’)

args = par s e r . p a r s e a r g s ()
24

Load GeoJSON
26 with open (args . json , ” r t ”) as f :

11

https://www.ogc.org/standard/sfa/

D = json . load (f)
28

Store here the l i s t o f polygons found in the GeoJSON f i l e
30 polygons = []

32 # Parse the GeoJSON
The coo rd ina t e s are in f e a tu r e [’ geometry ’] [’ c oo rd ina t e s ’]

34 f o r f e a tu r e in D[’ f e a t u r e s ’] :
i f ’ geometry ’ not in f e a tu r e :

36 cont inue

38 i f ’ c oo rd ina t e s ’ not in f e a tu r e [’ geometry ’] :
cont inue

40

coo rd ina t e s = f e a tu r e [’ geometry ’] [’ c oo rd ina t e s ’] [0]
42 polygons . append (coo rd ina t e s)

44 # Fina l ly , p r i n t the in fo rmat ion o f the polygons found
pr in t po lygons (polygons)

When a demo uses a map, it can only contain that single input in the DDL.

key description req

type type of the input: map yes
center longitude and latitude (example: [-3.703790,

40.416775] to center the map in Madrid)
no

ext input extension (for example, .json) yes
Table 6: Fields of map input type.

5 The params section

The params section describes the set of parameters needed by a demo, their
constraints and the visual appearance of the user control. It is defined as an
array of sets, where each set contains (key, value) pairs. In this section, we
show examples of the expected appearance of these parameters in the web
interface. The look of the controls might differ depending on the operating
system and the browser used.

12

5.1 range

The range type is used as an horizontal slider constrained by a minimum and
a maximum numeric values. It can be moved with the mouse or by using the
arrow keys according to the step value fixed in the DDL. The user control is
similar to the one at Figure 2.

key description req

type range yes
id Used to identify the parameter. yes
label A name and/or description of the parameter. It

appears on the left side in the web interface.
no

comments A description of the parameter. It appears on the
right side in the web interface.

no

visible Javascript expression evaluated as a boolean. no
values Sets min, max, step and default values using a

key/value scheme { ”min”:val, ”max”:val, ”step”:val,
”default”:val }. Ex: to select a value included in (-1,
-0.5, 0, 0.5, 1) write "values": {"min": -5,

"max": 5, "step": 0.5, "default": 0}

yes

Table 7: Fields for the properties of the range type.

Figure 2: Range type example. It shows a slider with values from 0.02 to
0.2.

5.2 selection collapsed

The selection collapsed type returns one string selected by a key (for example,
a color code selected by name). The user control is a dropdown select similar
to the one in Figure 3.

key description req

type selection collapsed yes
id Used to identify the parameter. yes

13

label A name and/or description of the parameter.
It appears on the left side in the web
interface.

no

comments A description of the parameter. It appears
on the right side in the web interface.

no

visible Javascript expression evaluated as a boolean. no
values set of (key, value) pairs, where the key is the

displayed text and the value is the string
returned, for example "values":
{"black": "000000", "white":

"FFFFFF"}

yes

default value defines the default value for this parameter,
should be one the values defined in ’values’.

yes

Table 8: Fields for the properties of the selec-
tion collapsed type.

Figure 3: Selection collapsed example. In this case, the selection offers five
options to choose.

14

5.3 selection radio

The selection radio returns one string selected by a key (for example, a color
code selected by name). The user control is a set of radio buttons as in
Figure 4.

key description req

type selection radio yes
id Used to identify the parameter. yes
label Name and/or description of the parameter. It

appears on the left side in the web interface.
no

comments Description of the parameter. It appears on
the right side in the web interface.

no

visible Javascript expression evaluated as a boolean. no
values set of (key, value) pairs, where the key is the

displayed text and the value is the string
returned, for example "values":
{"black": "000000", "white":

"FFFFFF"}

yes

default value defines the default value for this parameter,
should be one the values defined in ’values’.

yes

vertical It is boolean value. The button distribution
is vertical when the value is activated (true),
otherwise, the visualization is horizontal as
default.

no

Table 9: Fields for the properties of the selection radio
type.

Figure 4: Radio buttons example. The label description is Mode and the
parameter offers two radio buttons. The vertical option is disabled.

5.4 label

The label type can be used to separate groups of parameters or to include
html fields (images, external links, etc.) in the web interface.

15

key description req

type label yes
label HTML text to display, as a single string or

as an array of strings.
yes

visible Javascript expression evaluated as a
boolean.

no

Table 10: Fields for the properties of the label type.

Figure 5: Label example. The label explains that the sliders below represent
matrix values according to the image depicted in the label.

5.5 checkbox

The checkbox type returns a boolean value. The user control is a checkbox
similar to the one in Figure 6.

key description req

type checkbox yes
id Used to identify the parameter. yes
label A name and/or description of the

parameter. It appears on the left side.
no

16

comments A description of the parameter. It appears
on the right side in the web interface.

no

visible Javascript expression evaluated as a
boolean.

no

default value boolean: True for checked
Table 11: Fields that manages the properties of the
checkbox type.

Figure 6: Checkbox example. This can be used in the demos that need to
activate or not an option.

5.6 numeric

The numeric type returns a numeric value validated against constraints (min,
max). The user control is an input field with numbers. Note that this is quite
similar to the range type but without the slider. You can see an example in
Figure 7.

key description req

type numeric yes
id Used to identify the parameter. yes
label A name and/or description of the

parameter. It appears on the left side.
no

comments A description of the parameter. It appears
on the right side in the web interface.

no

visible Javascript expression evaluated as a
boolean.

no

values Set min, max, and default values using the
following key/value scheme "values":
{"min": -5, "max": 5, "default":

0}

yes

Table 12: Fields for the properties of the numeric type.

17

Figure 7: Numeric example. The label explains that the sliders below repre-
sent matrix values according to the image depicted in the label.

5.7 text

The text type returns a string. The user control is an input field.

key description req

type text yes
id Used to identify the parameter. yes
label A name and/or description of the

parameter. It appears on the left side.
no

comments A description of the parameter. It appears
on the right side in the web interface.

no

visible Javascript expression evaluated as a
boolean.

no

values set maxlength in characters and default
values using the following key/value scheme
"values": {"maxlength": 3,

"default": "fr"}

no

Table 13: Fields for the properties of the text type.

Figure 8: Text example. The user can write some text as parameter for the
demo.

5.8 textarea

This param allows including textual information as a parameter. The text
must be written in the DDL with the correct format. This means that the
text area can show your message with new lines, skip lines and the normal
ways of a file if the encoding format is correct. For instance, if you want
that your text area looks like in Figure 9, the default value must be as in the
following example:

Examples: Example of a DDL when using a text area.

1 {
2 "default_value": "INFORMATION ABOUT FIRST RECTANGLE

CONTAINER\r\nNORMALIZED IMAGE DIMENSION\r\nwidth_float = 1

.413793\r\n",

3 "wrap":false,

18

4 "height": 5,

5 "type": "textarea",

6 "id": "file_1",

7 "label": "Parameter file of the model .",

8 "comments":"You can also change the parameters

in the text.",

9 }

key description req

type textarea yes
label name and/or description of the parameter.

It appears on the left side.
no

id Used to identify the parameter. yes
default value Text to include in the text area no
visible Javascript expression evaluated as a

boolean.
no

height Set the height of your textarea. The
maximum value is 2000px.

no

width Set the width of your textarea. If you do
not include the parameter it will be 100%.

no

wrap This attribute specifies how the text in a
text area is wrapped. False means that the
line is not adapted to the textarea. True
the opposite.

no

Table 14: Fields for the properties of the textarea type.

Figure 9: textarea example. The label explains that the sliders below repre-
sent matrix values according to the image depicted in the label.

6 The run section

The run section specifies which script or binary needs to be called to run a
demo, along with its parameters. The input files defined in the input section

19

are available as arguments with a normalized name input {0..n}.{extension}
(ex: input 0.png). The parameters define in params section are available by
their id with $ as a prefix (ex: ”id”: ”width”, $width).

In this example, the demo is executed by the binary file jpegblocks (compiled
and moved in the build section), with input 0.png as an input and $block size
as a parameter.

1 "run": "jpegblocks input_0.png $block_size"

The execution is then passed to the run.sh script, provided in the optional
demoextras.zip, with input 0.png $width as arguments.

1 "run": "${ demoextras }/run.sh input_0.png $width"

In adition, there are other variables that will be substituted before execution
(run section). As shown before, to use a variable just insert the name of the
variable between curly brackets preceded by a dollar sign.

In the previous example the demoExtras path will be replaced in order that
the run section executes a script inside the demoExtras folder. It follows a
list of all available variables for the run section:

• demoextras: will be replaced by the demoExtras’ path of the current
demo,

• matlab path: will be replaced by the path to the current MATLAB
installation,

• bin: will be replaced by the directory with the compiled code, or any
moved element,

• virtualenv: will be replaced by the path to the virtualenv, if any. This
folder contains the scripts needed to activate the virtualenv.

7 The archive section

The archive section defines the data (files, parameters, running time, . . .) to
be stored for each experiment performed with original data uploaded by the
user. The normal behaviour is to archive only the original data uploaded by
the users. However, a demo editor can also allow to store all the experiments

20

done even if the data does not come from an upload (see the archive always
field).

key description req

files (key, value) pairs where key is the file to
archive and value is the name.

no

hidden files This field contains files as in the above one.
This is used to store files required for a
correct reconstruction of an experiment but
that the demo editor does not want to show
in the archive.

no

params List of parameters to archive. no
enable reconstruct Show a button to reconstruct an experiment

stored in the archive.
no

archive always The archive will store the experiments even if
they are performed with the data proposed
by the demo (if the private mode is not set).

no

Table 15: The archive section, properties

Example: Here, we see DDL’s needed to activate the reconstruct and
archive always options. They also specify the files and params that must
be stored in a particular order. The running time for each execution is also
stored.

1 "archive":

2 {
3 "enable_reconstruct": true,

4 "archive_always": true,

5 "files" :

6 { "input_0.png" : "input image",

7 "primitives.txt" : "Primitives"

8 },
9 "params" :

10 ["high_threshold_canny",

11 "initial_distortion_parameter",

12 "angle_point_orientation_max_difference"],

13 "info" : { "run_time": "run time" }
14 }

21

8 The results section

The results specifies what to display as a result of an experiment. It is
an array of sets, where each entry describes one type of output from the
algorithm. There are displayed sequentially one below the other.

8.1 gallery

The results gallery type displays images. These ones can be displayed in
different rows and columns. The example of this section shows the Demo
Description Lines required for the visualization showed in the Figure 10.
Notice that each row implies an array for each image. In the case that you
only want to display one image, the DDL only required an expresion like:
"label":{ "img": "name of file.extension"}

key description req

type gallery yes
visible A Javascript expression evaluated as a boolean. no
label HTML label for the gallery, can be either a single

string or a list of string that will be concatenated.
no

contents A set of sets, each entry describes one or more
images with a key and properties:• key, required, a label for the entry, could be a

string or an evaluated expression in case of
repeat;

• img, required, a string with a filename or an
array of strings with filenames;

• visible, optional, a Javascript expression
evaluated to a boolean;

• repeat, optional, a Javascript expression, will
create a loop in the form idx=0..range-1

yes

Table 16: Properties of the gallery type in the results
section.

Example: The next example shows the DDL’s needed for displaying three
images per row in an image gallery.

1 {
2 "contents": {
3 "IPOL colors (scaled, no level lines)": {
4 "img": ["rof_ipoln.png", "ground_truth_ipoln.png", "

color_wheel_ipoln.png"]

5 },
6 "IPOL colors (unscaled, with level lines)":{

22

7 "img": ["rof_ipol1.png", "ground_truth_ipol1.png", "

color_wheel_ipol1.png"]

8 },
9 "Middlebury Colors":{

10 "img": ["rof_middlebury.png", "ground_truth_middlebury

.png", "color_wheel_middlebury.png"]

11 },
12 "Arrows":{
13 "img": ["rof_arrows.png", "ground_truth_arrows.png", "

color_wheel_arrows.png"]

14 },
15 "Input images (I1,I2) ": {
16 "img": ["input_0.png", "input_1.png"]

17 },
18 "label": "<h3>Optical Flow (Calculated flow, Ground Truth

)</h3>",

19 "type": "gallery",

20 "visible" : "info.gt"

21 },

Figure 10: Example of an image gallery. In this example, we see three images
per row.

8.2 gallery video

The results gallery video type displays video files. This type is quite similar
to the previous one but related to the visualization of video contents.

key description req

type gallery video yes

23

visible A Javascript expression evaluated as a boolean. no
label HTML label for the gallery, can be either a single

string or a list of string that will be concatenated.
no

contents A set of sets, each entry describes one or more
images with a key and properties:• key, required, a label for the entry, could be a

string or an evaluated expression in case of
repeat;

• img, required, a string with a filename or an
array of strings with filenames;

• visible, optional, a Javascript expression
evaluated to a boolean;

• repeat, optional, a Javascript expression, will
create a loop in the form idx=0..range-1

yes

Table 17: Properties of the gallery video type in the re-
sults section.

Examples: Advanced example, mixing repeat, visible, using an array of
filenames.

1 {
2 "type": "video_gallery",

3 "label": "Video gallery ",

4 "display": "grid",

5 "visible": "1==1",

6 "contents": {
7 "Input_0": {
8 "video": "’input_0.mp4 ’",

9 "visible": "1==1"

10 },
11 "’Scale_ ’+idx": {
12 "video": "’scaled_ ’+idx+’.mp4 ’",

13 "repeat": "4"

14 }
15 }
16 }

8.3 file download

The results file download type proposes a link to download a file.

key description req

24

type file download yes
visible A Javascript expression evaluated as a boolean. no
repeat range expression (evaluated in Javascript): will

create a loop in the form idx=0..range-1
no

label HTML title associated to the file to download. In
case of repeat, evaluated as an expression with idx
variable, otherwise, can be evaluated if it starts with
a single quote.

yes

contents either a single string of the filename to download, or
a list of label:filename pairs for files to download. In
case of repeat, evaluated as an expression with idx
variable.

yes

Table 18: Properties of the file download type in the re-
sults section.

We show two examples: the first one is to download one result and the second
is to download several results in the same line.

Examples :

1 {
2 "type" : "file_download",

3 "label" : "Download Hough result",

4 "contents" : "output_hough.png"

5 }

1 {
2 "type" : "file_download",

3 "label" : "<h3>Download computed optical flow: </h3 >",

4 "contents" : {
5 "tiff": "stuff_tvl1.tiff",

6 "flo" : "stuff_tvl1.flo",

7 "uv" : "stuff_tvl1.uv"

8 }
9 }

Example using repeat :

25

1 {
2 "type" : "file_download",

3 "repeat" : "params.scales",

4 "label" : "’Download the estimations obtained at scale

’+idx",

5 "contents" : "’estimation_s ’+idx+’.txt ’"

6 }

8.4 html text

It displays the given HTML-encoded content.

key description req

type html text yes
visible A Javascript expression evaluated as a boolean. no
contents An array of strings, that will be concatenated to

form the HTML content. This content can contain
Javascript expression if it starts with a single quote.

yes

Table 19: Properties of the html text type in the results
section.

Example :

1 {
2 "type" : "html_text",

3 "contents" : [

4 "’<p style =\"font -size:85%\">",

5 "* “Exact” is computed with FIR, ",

6 "DCT for &sigma ; > 2 ",

7 "(using ’+params.sigma <=2?’FIR ’:’DCT ’+",

8 "’</p>’"

9]

10 }

8.5 html file

It displays the given HTML file.

26

key description req

type html file yes
visible A Javascript expression evaluated as a boolean. no
contents A string with a filename. yes

Table 20: Properties of the html file type in the results
section.

Example :

1 {
2 "type" : "html_file",

3 "contents" : "output.html"

4 }

8.6 text file

It displays the contents of a text file.

key description req

type text file yes
visible Javascript expression evaluated as a boolean. no
label HTML label. yes
contents A text filename to display. yes
style CSS rules written in a JSON string, ex "style":

"{’font-weight’: ’bolder’, ’color’:

’red’}"

yes

Table 21: Properties of the text file type in the results
section.

Example :

1 {
2 "type" : "text_file",

3 "label" : "<h2>Output <h2 >",

4 "contents" : "stdout.txt",

5 "style" : "{’width ’: ’40em ’, ’height ’: ’16em ’, ’

background -color ’: ’#FFE ’}"

27

6 }

8.7 message

The message type displays a text message with a predefined color. This can
be used for warning or error messages.

key description req

type message yes
visible Javascript expression evaluated as a boolean. no
contents A string which will be evaluated by Javascript to get

the message.
yes

textColor The name of a color or a CSS-compatible color. no
Table 22: Properties of the message type in the results
section.

Examples :

1 {
2 "contents": "’Image too small: the input image needs to

be at least 42000 pixels to get a reliable estimate

Forced to use one bin for the estimation .’",

3 "type": "message",

4 "textColor": "red",

5 "visible": "info.sizeX * info.sizeY < 42000"

6 }

28

	Introduction
	The general section
	The build section
	The inputs section
	image
	video
	data
	map

	The params section
	range
	selection_collapsed
	selection_radio
	label
	checkbox
	numeric
	text
	textarea

	The run section
	The archive section
	The results section
	gallery
	gallery_video
	file_download
	html_text
	html_file
	text_file
	message

