
Change point detection in Python
Fundamentals of reproducible research and free software (MVA 2022-2023)

Charles Truong1

1Centre Borelli
Université Paris-Saclay
ENS Paris-Saclay, CNRS

Wednesday 23rd November 2022



1/17

Introduction

▶ Change point detection is a common task when dealing with non-stationary time series.
▶ Application example: study of COVID-19 infection curve [Jiang et al., 2020].

▶ Data from “Our World in Data”
(ourworldindata.org).

▶ Cumulative reported deaths in log-scale.
▶ Piecewise linear trends (linear spline smoothing

with optimal knot selection).
▶ The slope gives the growth rate (“log-return”).
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Introduction

▶ Change point detection is a common task when dealing with non-stationary time series.
▶ Application example: automatic diagnosis of neurologically impaired patients [Truong et al., 2019a].

Healthy and pathological subjects underwent a fixed
protocol:

- standing still,

- walking 10m,

- turning around,

- walking back,

- standing still.

Protocol schema

Angular velocity (lower back sensor, sampling 100 Hz)

▶ Can also be applied to finance, industrial monitoring, public health monitoring, etc. [Truong et al., 2020].
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What is change point detection?

▶ Change point detection consists in finding the temporal boundaries between homogeneous time periods.
▶ Informally: “multivariate signal −→ list of change point indexes”

x y z 
8.139 8.337 -21.055
6.964 9.881 -20.693
4.317 9.993 -19.309
1.752 8.950 -16.941
-0.305 7.356 -13.143
-2.320 7.384 -7.361
-3.312 8.467 -2.530
-3.697 10.891 2.523
-2.622 13.363 5.863
-2.728 11.761 4.473

[t1, t2, t3, …]



3/17

What is change point detection?

▶ Change point detection consists in finding the temporal boundaries between homogeneous time periods.
▶ Informally: “multivariate signal −→ list of change point indexes”

x y z 
8.139 8.337 -21.055
6.964 9.881 -20.693
4.317 9.993 -19.309
1.752 8.950 -16.941
-0.305 7.356 -13.143
-2.320 7.384 -7.361
-3.312 8.467 -2.530
-3.697 10.891 2.523
-2.622 13.363 5.863
-2.728 11.761 4.473

[t1, t2, t3, …]



3/17

Table of contents

1. Introduction

2. What is change point detection?

3. General principle of ruptures

4. Examples
Change in mean and variance (1-D)
Change in mean and variance (n-D)
Change in distribution (parametric)
Change in distribution (non-parametric)
Gait analysis

5. Supervised change point detection
General principle
Learn the representation

6. Conclusion



4/17

General principle

How to choose a segmentation?

= {t1, t2, t3}

V( ) = c(y0. . t1) + c(yt1. . t2) + c(yt2. . t3) + c(yt3. . T)

The “best segmentation” is the minimizer, denoted T̂ ,
of a criterion V(T ):

V(T ) :=
K∑

k=0

c(ytk ..tk+1 ).

Cost example: c(y) =
∑

t(yt − ȳ)2.

Problem 1.
Fixed number K of change points:

T̂ := arg min
T

V(T ) s.t. |T | = K .

Problem 2.
Unknown number of change points:

T̂ := arg min
T

V(T ) + pen(T )

where pen(T )measures the complexity of a segmen-
tation T .
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General principle

Detection methods are the combination of three elements [Truong et al., 2020].

Cost function Search method Constraint

Criterion V(T ) to minimize: V(T ) :=
K∑

k=0

c(ytk ..tk+1 ) .

Problem 1.
Fixed number K of change points:

T̂ := arg min
T

V(T ) s.t. |T | = K .

Problem 2.
Unknown number of change points:

T̂ := arg min
T

V(T ) + pen(T )

where pen(T )measures the complexity of a segmen-
tation T .
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General principle

▶ A modular architecture.

First import and data loading.

Choosing the cost function .

Here, c(y) =
∑

t (yt − ȳ)2 .

Choosing the search method .
Here, binary segmentation.

Fitting the algorithm.

Choosing the constraint .
Then detecting the change points (“predict”).

Measuring the detection accuracy.



7/17

A discrete optimization problem

Minimize the sum of cost over all segmentations:

min
t1,t2,...,tK

K∑
k=0

c(ytk ..tk+1 ).

or

min
t1,t2,...,tK

K∑
k=0

c(ytk ..tk+1 ) + βK .

▶ A naive implementation is prohibitive (
(T
K

)
segmentations).

▶ The problem is solved recursively using Bellman’s dynamic programming.
▶ For most cost functions, the complexity is O(T 2) in operations and O(T).
▶ Heuristics to approximately solve this problem exist: binary segmentation (with variants) and

window-sliding. Complexity inO(T).
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Change in mean and variance (1-D)

Changement de moyenne
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(yt − ȳa..b)
2

where ȳa..b is the empirical mean of ya..b .
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Cost function:

c(ya..b) = (b − a) log(σ̂a..b)

where σ̂a..b the empirical standard-deviation ya..b .
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(yt − ȳa..b)
2
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Change in mean and variance (n-D)

Change in mean
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c(ya..b) = (b − a) log det Σ̂a..b

where σ̂a..b is the empirical covariance matrix of ya..b .
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Change in mean and variance (n-D)

Change in mean
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Change in distribution (parametric)

Change in distribution (parametric)
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c(ya..b) = −max
θ

log fθ(ya..b)

where fθ is the density of the chosen distribution,
parametrized by θ.

Important fact. The estimated change points con-
verge to the true changes.

[Lavielle, 1999, Detection of multiples changes in a se-
quence of dependant variables. Stochastic Processes
and Their Applications, 83(1), 79–102.]

▶ Not necessarily i.i.d. observations.
▶ Can be strongly dependant (but stationary).
▶ . . .
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Change in distribution (non-parametric)

When the underlying distribution is unknown:
▶ [Arlot et al., 2019, A kernel multiple

change-point algorithm via model selection.
Journal of Machine Learning Research, 20(162),
1–56.]

▶ [Matteson and James, 2014, A nonparametric
approach for multiple change point analysis of
multivariate data. Journal of the American
Statistical Association, 109(505), 334–345.]

▶ [Ross and Adams, 2012, Two nonparametric
control charts for detecting arbitrary
distribution changes. Journal of Quality
Technology, 44(2), 102–117.]

The kernel approach is particularly interesting be-
cause it can deal with non-numerical data: symbolic
signals, texts, functional time series,. . .

General principle:
▶ The signal is mapped to a high-dimensional

space: yt −→ ϕ(yt).
▶ Detection of change in the mean of the ϕ(yt).

Cost function:

c(ya..b) =
b−1∑
t=a

∥ϕ(yt)− µ̄∥2H

where µ̄ is the empirical mean of {ϕ(yt)}a..b . (Com-
puted using the kernel trick.)



12/17

Gait analysis

▶ To simplify the detection task, the signal is transformed (here, short-term Fourier transform).
▶ Then mean-shifts are detected.

Angular velocity (lower back sensor, sampling 100 Hz) Signal transformation



12/17

Gait analysis

▶ To simplify the detection task, the signal is transformed (here, short-term Fourier transform).
▶ Then mean-shifts are detected.

Angular velocity (lower back sensor, sampling 100 Hz) Signal transformation



12/17

Table of contents

1. Introduction

2. What is change point detection?

3. General principle of ruptures

4. Examples
Change in mean and variance (1-D)
Change in mean and variance (n-D)
Change in distribution (parametric)
Change in distribution (non-parametric)
Gait analysis

5. Supervised change point detection
General principle
Learn the representation

6. Conclusion



13/17

Supervised change point detection
General principle

▶ How to integrate expert knowledge to calibrate the change point detection? [Truong et al., 2019b]
▶ The expert provides the target segmentation: either full or partial label.
▶ Labels are hard to collect. The easier for the clinicians, the better.

Full label

The exact change point locations are provided.

Partial label

Only homogeneous periods (hatched areas) are provided (weakly super-

vised).
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Learn the representation

Labels are transformed into constraints. Intuitively,
the problem is:
▶ Learn a transformation Ψ such that
d(Ψ(xt),Ψ(xs)) ≤ u if xt and xs similar

d(Ψ(xt),Ψ(xs)) ≥ l if xt and xs dissimilar

(u > 0 and l > 0)

Two samples are similar if they belong to the same
regime.
Two samples are dissimilar if they belong to consec-
utive regimes.

This setting can be used to learn a deep representa-
tion.
Here, two layers of temporal separable convolutions and max-

pooling (with tensorflow).

Epoch by epoch (epoch 0)

0 500 1000 1500 2000

0.4

0.2

0.0

0.2
Max error: 9.08 sec (epoch 0)

True segmentation: alternating colors.

Predicted segmentation: dashed lines.
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Conclusion

▶ Code for those experiments will be available on my GitHub github.com/deepcharles.
▶ New methods are frequently implemented in ruptures.
▶ Extensions to graph/network data soon.
▶ Differentiable dynamic programming for end-to-end unsupervised representation learning.

github.com/deepcharles
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