S2P: a reproducible Satellite Stereo Pipeline

- 1. Description of the s2p software
- 2. Some github "drama" (licensing, collaboration)
- 3. Two forms of reproductibility
 - 3.1. pip install s2p
 - 3.2. online jupyter notebook

THE PROBLEM : COMPUTE 3D MODELS FROM OPTICAL IMAGES

Input: multiple views

Output: 3D reconstruction

Images: WorldView3 from the MVS benchmark dataset of [Bosch et al 2016]

* 2011 first development (launch of Pléiades satellite)

* 2011 first development (launch of Pléiades satellite)

* **2015** beginning of SERTIT will collaborations

- * 2011 first development (launch of Pléiades satellite)
- * **2015** beginning of SERTIT **Collaborations**
- * 2016 win IARPA satellite stereo challenge

- * 2011 first development (launch of Pléiades satellite)
- * **2015** beginning of SERTIT Collaborations
- * 2016 win IARPA satellite stereo challenge
- * 2016-2018 research partnership with MBDA
 - streamline the pipeline, precision improvements
 - secretive usage

- * 2011 first development (launch of Pléiades satellite)
- * **2015** beginning of SERTIT Collaborations
- * 2016 win IARPA satellite stereo challenge
- * 2016-2018 research partnership with MBDA
 - streamline the pipeline, precision improvements
 - secretive usage
- * 2017-2019 large-scale use by CNESC
 - close collaboration (mails every week)
 - run on a cluster with thousands of CPUs
 - continuous processing of incoming Pléiades images

- * 2011 first development (launch of Pléiades satellite)
- * **2015** beginning of SERTIT Collaborations
- * 2016 win IARPA satellite stereo challenge
- * 2016-2018 research partnership with MBDA
 - streamline the pipeline, precision improvements
 - secretive usage
- * 2017-2019 large-scale use by CNESC
 - close collaboration (mails every week)
 - run on a cluster with thousands of CPUs
 - continuous processing of incoming Pléiades images
- * 2019-2021 large-scale use by VKARROS
 - direct collaboration (postdocs part-time)
 - about 2000 DSM/year from SkySat images

- * 2011 first development (launch of Pléiades satellite)
- * **2015** beginning of SERTIT Collaborations
- * 2016 win IARPA satellite stereo challenge
- * 2016-2018 research partnership with MBDA
 - streamline the pipeline, precision improvements
 - secretive usage
- * 2017-2019 large-scale use by CNESC
 - close collaboration (mails every week)
 - run on a cluster with thousands of CPUs
 - continuous processing of incoming Pléiades images
- * 2019-2021 large-scale use by VKARROS
 - direct collaboration (postdocs part-time)
 - about 2000 DSM/year from SkySat images
- * 2018-2022 MVA course on satellite imaging

- * 2011 first development (launch of Pléiades satellite)
- * **2015** beginning of SERTIT Collaborations
- * 2016 win IARPA satellite stereo challenge
- * 2016-2018 research partnership with MBDA
 - streamline the pipeline, precision improvements
 - secretive usage
- * 2017-2019 large-scale use by CNESC
 - close collaboration (mails every week)
 - run on a cluster with thousands of CPUs
 - continuous processing of incoming Pléiades images
- * 2019-2021 large-scale use by VKARROS
 - direct collaboration (postdocs part-time)
 - about 2000 DSM/year from SkySat images
- * 2018-2022 MVA course on satellite imaging
- * Other users:
 - Random chinese developers asking questions on github
 - Oleg Alexandrov (from NASA)

* Classical 3D stereo tools do not work well out of the box for satellite images (OpenCV, OpenMVG, ...)

* Classical 3D stereo tools do not work well out of the box for satellite images (OpenCV, OpenMVG, ...)

* NASA : AMES stereo pipeline

* Classical 3D stereo tools do not work well out of the box for satellite images (OpenCV, OpenMVG, ...)

* **NASA** : AMES stereo pipeline

* CNESC : CARS+Pandora (used for CO3D) 🖧 pandora

CARS produces a Digital Surface Model (DSM)

SPECIFIC DIFFICULTIES OF SATELLITE STEREO

- * Easy: Single-date image pair from one satellite
- * More than two images: need for a "fusion" strategy
- * Multi-date difficulties (hard matching)
- * Multi-satellite difficulties (super-hard matching)
- * Degenerate bundle adjustment

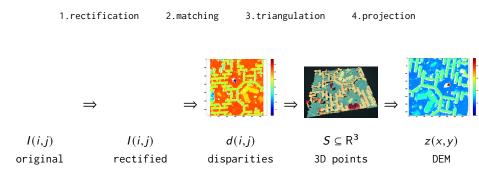
OVERVIEW OF THE WHOLE PIPELINE

Jérémy: Super-resolution

Carlo: Crop and local RPC refinement

3. Roger: Bundle adjustment

Gabriele: Correlation

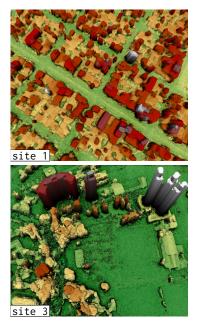


Roger: DEM filtering and fusion

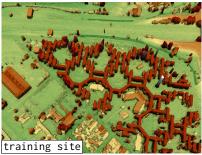
INNER CORE OF THE PIPELINE

Four steps to convert a pair of images to a DEM:

- 1. Find industrial partners with exciting new problems
- 2. Refactor legacy parts of the code
- 3. Try/develop GPU-based correlators
- 4. (Optionally) integrate single-image 3D methods



texturing by simple averaging



texturing with shadow removal

S2P OUTPUT RESULTS

(browse github repo, issues, etc)

github.com/cmla/s2p

Three independent issues:

- 1. Licensing (AGPL, GPL, MIT, Apache, BSD, dual)
- 2. Contribution license agreement
- 3. Contribution guidelines

The most critical decision is probably the CLA, and it is nearly impossible to change later on. Copyright holders can agree to change the license as they want.