
Fundamentals of reproducible research and free software

Introduction to free and
open source software

Miguel Colom
http://mcolom.info

http://mcolom.info/

Some milestones in computing

● Ramon Llull (1308) proposes a method for automatic reasoning. "Thinking
machine".

● Blaise Pascal (1642): adding machine
● The ENIAC (Electronic Numerical Integrator And Computer) machine is built

(1946)
● Joseph Jacquard (1801): textile loom with punch cards → first programmable

machine?
● Charles Babbage (1833): analytical engine. Later Ada Lovelace proposed using

punch cards to make it programmable
● George Boole (1854): boolean algebra
● Frederick Guthrie (1873), Thomas Edison (1880): discovery of the thermionic

emissions, the base of vacuum tubes

Some milestones in computing

Llull’s thinking machine

Pascal adding machine (“Pascaline”)

Some milestones in computing

ENIAC computer Jacquard textile punch card machine

Some milestones in computing

Babbage analytical engine A computer based on vacuum tubes

Some milestones in computing

● Alan Turing (1936): basis of automatic programming. Turing machine. Stop
problem. Turing test. And many theoretical developments.

● John von Veumann (1945) proposes the von Neumann architecture
● John Bardeen (1947): invents the BJT transistor. Start of microelectronics!
● Kathleen Booth (1948): invents the first assembly language, for the

Automatic Relay Calculator (ARC)
● An Wang (1949): invents the core memory
● Grace Hopper (1952): idea of using high-level languages and compilers
● Remington Rand, US company (1953): releases the source code of the A-2

system for UNIVAC. First free/open source software?
● ARPANET (1969) implements TCP/IP. First pre-internet node at UCLA.

Some milestones in computing

A replica of the first BJT Core memory

→ Curious video to learn about core memory:
https://www.youtube.com/watch?v=AwsInQLmjXc

https://www.youtube.com/watch?v=AwsInQLmjXc

Some milestones in computing

● First cheap, low-power, small CPUs: Intel 4004 (1971), 8008 (1972), Zilog
Z80 (1978)

● IBM (1981) invents the "personal computer” (PC)
● Richard Stallman starts the GNU project (1983), the basis of free

software
● Yann LeCun (1988) applies backpropagation to a deep neural networks: start

of deep learning. Wei Zhang (1988) applies it to a CNN.
● The WWW starts at CERN, by Tim Berners-Lee (1990)
● Linus Torvalds starts Linux (1991)

Some milestones in computing

The first PC

Some milestones in computing

● IBM (2001) introduce the first multi-core CPU, Power4 architecture
● IBM (2021) proposes a quantum computer with 100 qubits
● David Baker, Demis Hassabis, and John Jumper (2024): Nobel prize to in

Chemistry to reveal computationally the structure of proteins with the
AlphaFold2 system

Let's go back in time…

● Richard Stallman starts the GNU project (1983), the basis of free
software

Image: Mikhail Leonov/Shutterstock

Free software and the GNU project

● Richard M. Stallman, activist and computer scientist at MIT
● Argues that one should have the right to share SW with their neighbors, to

study it, learn from it, and makes changes.
● Not just for practical matters, but a moral value. Freedom of the user.

Free software and the GNU project

● In 1985 he publishes the GNU Manifesto. Goal: write a "free" (as in freedom)
version of UNIX, an existing proprietary closed-source OS.

● Right after, he starts the Free Software Foundation (FSF): legal
infrastructure for the free-software movement. Namely: legal licenses, such
as GPL.

● Nowadays: the GNU project is a mass collaborative initiative for the
development of free software.

The four freedoms of free software

● Defined by the FSF (1986)

● Freedom 0: to use the program for any purpose
● Freedom 1: to study how the program works, and change it to make it do

what you wish
● Freedom 2: to redistribute and make copies so you can help your neighbor
● Freedom 3: to improve the program, and release your contributions to the

public, so that the whole community benefits

→ Any software which complies with this is free software

Free and open-source software

● Is it the same?
● Definition of open-source software by Red Hat: Open source software is code

that is designed to be publicly accessible—anyone can see, modify, and
distribute the code as they see fit.

Free and open source software

● Compatible with the four freedoms of free software!

→ Therefore, open source is free software

Free and open source software

● Is it the same? No.

● What's the difference?
○ Open-source movement: focused on a software development model which encourages

collaboration. Public availability → better software.
○ Free-software movement: the most important is the freedom of the user, rather than the

product itself or any other technical considerations.

Other kind of software

● Freeware: distributed without demanding a fee for its usage. Free as in
"free beer", not as in "freedom". Gratis.

● Shareware: distributed without any cost but for a specific evaluation period
only.

● Abandonware: no active development, and the author is not taking care
of it. Also, if the copyright status is not clear.

→ These are NOT free software!

● The "freedoms" and these are just definitions or interpretations, without any
legal value → Need of a legal framework.

Software licenses

● Legal binding between software and its usage
● It might include:

○ Can you redistribute the software? Any restrictions?
○ Can you modify the program in any way?
○ Can you use the program as a component in a larger system?
○ Can you make copies of the software?
○ Can you access the source code? Can you try to decompile it?
○ Can I use the software in any context? For example, medical or as part of a critical system

(such a nuclear central).
○ Warranties for the final use. Hold liable.
○ And any other clauses.

Classification of software licenses

● Public domain: the author abandons its ownership. Therefore, no possibility of
copyright, trademark or patenting. No restrictions, nor any freedoms: it can be
modified, distributed, sold, sublicensed, made closed-source, etc. Examples:
ELIZA (1966), BLAS (1979), ImageJ (1997). NO FREE SOFTWARE

● Copyleft FOSS license: any free or open source license. Copyright retained, right
to copy, modify, re-distribute. Can't be sub-licensed. Example: GPL license.

● Permissive FOSS license: similar to copyleft, but it allows sub-licensing.
Example: BSD licenses.

● Proprietary license: in general, any non-FOSS license. Normally they forbid
making copies, modifying, redistributing, sub-licensing, … Example: Microsoft
Windows End User License Agreements (EULA).

Example of public domain license: ELIZA (1966)

● ELIZA: a "psychotherapist” NLP computer program, by Joseph Weizenbaum.
● Complete original source code found and preserved in 2021.
● Licensed under a Creative Commons CC0 public domain license.
● https://creativecommons.org/publicdomain/zero/1.0/deed.en
● → https://creativecommons.org/publicdomain/zero/1.0/legalcode

The person who associated a work with this deed has dedicated the work to the
public domain by waiving all of his or her rights to the work worldwide under
copyright law, including all related and neighboring rights, to the extent allowed by law.

You can copy, modify, distribute and perform the work, even for commercial
purposes, all without asking permission.

https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://creativecommons.org/publicdomain/zero/1.0/legalcode

Example of a free-software license: GPL (1989)

● GNU General Public License
● Free Software Foundation
● Allows: commercial use, modification, distribution, place warranty, use

patent claims
● Forbids: sublicensing, hold liable
● Must: state changes, disclose source, include license, include copyright,

include install instructions.

https://www.gnu.org/licenses/gpl-3.0.html

https://www.gnu.org/licenses/gpl-3.0.html

Example of a free-software license: AGPL (2007)

● Affero GPL. Free Software Foundation
● Intended for software running on networks (websites, cloud, …)
● Similar to GPL3, adding that the source code must be distributed on the

web
● An example of website using A-GPL: IPOL

https://www.gnu.org/licenses/agpl-3.0.en.html

https://www.gnu.org/licenses/agpl-3.0.en.html

Example of an open-source license: LGPL (1991)

● Lesser GPL. Free Software Foundation
● Not recommended by FSF: https://www.gnu.org/licenses/why-not-lgpl.html
● Allows programs using LGPL software not to distribute their source

code
● After all, a free-software license. Very special case. To avoid.
● Intended for libraries

https://www.gnu.org/licenses/lgpl-3.0.html

https://www.gnu.org/licenses/lgpl-3.0.html

Example of an open-source license: MIT (1991)

● Short text
● Also known as "Expat license".
● Allows: commercial use, modification, sub-licensing
● Forbids: hold liable
● Must: include license, include copyright

Example of an open-source license: MIT (1991)

Copyright (c) <year> <copyright holders>

Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documentation files (the "Software"), to deal in the Software
without restriction, including without limitation the rights to use, copy, modify,
merge, publish, distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to the following
conditions:

The above copyright notice and this permission notice shall be included in all copies
or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,FITNESS FOR A
PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF
CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE
OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Example of an open-source permissive license:
3-clause BSD 3 (2009)

● Berkeley Software Distribution
● Allows: commercial use, modification, distribution, place warranty,

sublicensing
● Forbids: use trademark, hold liable
● Must: include copyright, include license

https://opensource.org/licenses/BSD-3-Clause

https://opensource.org/licenses/BSD-3-Clause

Example of a proprietary license: Zoom (2022)
●

Zoom terms of service

●
d Prohibited Use. You agree that You will not use, and will not permit any End User to use, the Services to : (i) modify,
disassemble, decompile, prepare derivative works of, reverse engineer or otherwise attempt to gain access to the
source code of the Services; (ii) knowingly or negligently use the Services in a way that abuses, interferes with, or disrupts
Zoom’s networks, Your accounts, or the Services; (iii) engage in activity that is illegal, fraudulent, false, or misleading, (iv)
transmit through the Services any material that may infringe the intellectual property or other rights of third parties; (v) build or
benchmark a competitive product or service, or copy any features, functions or graphics of the Services; or (vi) use the
Services to communicate any message or material that is harassing, libelous, threatening, obscene, indecent, would
violate the intellectual property rights of any party or is otherwise unlawful, that would give rise to civil liability, or that
constitutes or encourages conduct that could constitute a criminal offense, under any applicable law or regulation; (vii) upload
or transmit any software, Content or code that does or is intended to harm, disable, destroy or adversely affect performance
of the Services in any way or which does or is intended to harm or extract information or data from other hardware, software or
networks of Zoom or other users of Services; (viii) engage in any activity or use the Services in any manner that could damage,
disable, overburden, impair or otherwise interfere with or disrupt the Services, or any servers or networks connected to the
Services or Zoom’s security systems. (ix) use the Services in violation of any Zoom policy or in a manner that violates
applicable law, including but not limited to anti-spam, export control, privacy, and anti-terrorism laws and regulations and laws
requiring the consent of subjects of audio and video recordings, and You agree that You are solely responsible for compliance
with all such laws and regulations.

https://explore.zoom.us/en/terms/

https://explore.zoom.us/en/terms/

Creative Commons licenses (2002)

“Creative Commons licenses give everyone from individual creators to large
institutions a standardized way to grant the public permission to use their
creative work under copyright law”.

Creative commons licenses

● Six types of CC licenses:
○ CC BY
○ CC BY-SA
○ CC BY-NC
○ CC BY-NC-SA
○ CC BY-ND
○ CC BY-NC-ND

BY (“Attribution”): credit must be given to the creator

SA (“ShareAlike”): adaptations must be shared under the same terms

NC (“NonCommercial”): only noncommercial uses of the work are permitted

ND (“NoDerivatives”): no derivatives or adaptations of the work are permitted

Creative commons licenses

● General licenses for creators
● Legal binding for sharing, reproducing, diffusing works

A question for you:
Why CC licenses exist if we already have FOSS licenses?

Creative commons licenses

● Are they the best option for software? NO
○ These licenses are not designed for software specifically
○ Instead, use a specific software license for your software
○ However, OK for the documentation

Dual licensing

Dual licensing

● Software bonded to two or more different licenses
● Example: Firefox tri-license (!): MPL 1.1, GPL 2.0, and LGPL 2.1
● Is there a problem? What about conflicting rights? For example:

obligation to release the source code, and possibility to close it in a
proprietary product

Dual licensing

● Yes, it's possible. You need to be the copyright holder, of course

● Each license grants users some rights. They can pick the license
they prefer

● Two versions of the same program, with independent development
stories

● For example: one license can be GPL, the other BSD

Dual licensing: example

● Alice develops a program in the university
● She wants that it can be used in commercial products
● Alice licenses it under BSD: now a company can take her source code, and

close it in a proprietary product without asking for permission
● Alice licenses it under GPL: her software now is free. All users benefit from

being able to learn from the source code, they can use it and redistribute it.
Some company would like to use it, but they can't since they'd have to
release all their sources.

● Alice is the copyright holder of her software. Alice can thus put two licenses.
One BSD for companies to use their code, and GPL for the community. Dual
licensing.

Take-home messages

● A license is a legal text defining clearly what can and cannot be done with
the source code

● Free and open-source software are similar. The free software movement
focuses more on the ethical aspects and the freedom of the users. Open
source more on the convenience of sharing code as a development
principle.

● Free software is not "gratis"! It's about freedom. And it's totally compatible
with commercial use.

● There are many different software licenses. You need to study and pick the
best for the users and for you.

Software and patents

The idea of patents

● Patents go back medieval monarchs. Latin: litterae patentes*

● Idea: give exclusive permission to someone to allow for making something.
Allow for technical advances.

● Example: allow to make blades of steel for swords
● To arrive to the final product, the inventor dedicates time and resources,

and experiments until the result is satisfying
● This allowed the inventors to invest in their ideas without worrying about

competitors
● A temporary monopoly for the sake of a great benefit to society

* open letters, or an open document.

Software and patents

● Software is based on logic
● Similarly to scientific research, contributions are made over previous

contributions
● "Standing on the shoulders of giants” (Bernard de Chartres?, Isaac Newton?)
● From the simplest foundational ideas (how to add two binary numbers?) to

the most complex (how to implement a deep network with Keras?)

→Do patents for software make sense?

 What do you think?

Current situation

● European Patent Convention (1973): computer programs are excluded
from patentability

● In France are excluded “les programmes ou séries d'instructions pour le
déroulement des opérations d'une machine calculatrice”.

● However, laws are subject to interpretation!
○ Schlumberger case (1981): it is acceptable to patent an invention that that was

produced by a technical procedure where certain steps were implemented by software.
See: https://www2.droit.parisdescartes.fr/warusfel/articles/JurInvLog_warusfel03.pdf

○ USA, June 19, 2014, the US Supreme Court (Alice Corp v. CLS Bank International
case), rules that “merely requiring generic computer implementation fails to transform
[an] abstract idea into a patent-eligible invention”

https://www2.droit.parisdescartes.fr/warusfel/articles/JurInvLog_warusfel03.pdf

Some computer-related patents

● Double click (Microsoft, 2004). Method and system for activating double click
applications with a single click. https://patents.google.com/patent/US5611040
A/en

https://patents.google.com/patent/US5611040A/en
https://patents.google.com/patent/US5611040A/en

Some computer-related patents

Round corners in a tablet, and more, by Apple (2010): Portable display
device. https://patentimages.storage.googleapis.com/72/b9/6d/e9f1850214cb
cb/USD868775.pdf

https://patentimages.storage.googleapis.com/72/b9/6d/e9f1850214cbcb/USD868775.pdf
https://patentimages.storage.googleapis.com/72/b9/6d/e9f1850214cbcb/USD868775.pdf

Actually impossible to patent software? No

● Laws subject to interpretability
● Normally companies manage to patent software by considering the system

apparatus + software as a whole.
● Example, “Automated determination of booking availability for user

sourced accommodations” (AirBnB, 2020) https://patentimages.storage.g
oogleapis.com/97/27/84/418225e706573f/US20200019892A1.pdfFrom
their text: “Methods and systems for updating a calendar entry for an
accommodation listing are disclosed.”

https://patentimages.storage.googleapis.com/97/27/84/418225e706573f/US20200019892A1.pdf
https://patentimages.storage.googleapis.com/97/27/84/418225e706573f/US20200019892A1.pdf

Why not software patents?

● Discourage software companies to produce innovative software
● Discourage competitivity.

● Large companies try to patent as much as possible
● Patent wars. Patent trolls

● As a small company or developer, software patents most probably:
○ Won't be possible if solely related to software
○ If related to an apparatus, the patent won't really protect you in a patent war

Economic models of FOSS projects

● A good reference: The impact of open source software and hardware on
technological independence, competitiveness and innovation in the EU
economy.

● Freely available here: https://op.europa.eu/en/publication-detail/-/publication/
29effe73-2c2c-11ec-bd8e-01aa75ed71a1/language-en

● We'll briefly explore the taxonomy of Okoli and Nguyen (2016).

Economic models

https://op.europa.eu/en/publication-detail/-/publication/29effe73-2c2c-11ec-bd8e-01aa75ed71a1/language-en
https://op.europa.eu/en/publication-detail/-/publication/29effe73-2c2c-11ec-bd8e-01aa75ed71a1/language-en

● Free software is not gratis
● However, you can get the sources and compile the programs yourself
● How is this economically sustainable?

 Any ideas

Economic models

● Obtain revenue by offering services around the software, not directly by
selling the software itself: customization, support, maintenance, consulting,
localization, …

● Examples:
○ Google gives Android for free, including all development tools. It has also Google Play,

where applications are sold, and Google obtains revenues from each sale.
○ Google gives Tensorflow for free. It also offers a complete and paid cloud computing

infrastructure which is well adapted. Access to trained large neural networks.

Economic models: auxiliary services

● Let’s try grepping the Linux source for contributions of companies...

Economic models: auxiliary services

Economic models: auxiliary services

● Organizations pay the FOSS developers to
ensure that the product is maintained and
customized to their needs.

● Example:
○ "Google funds two linux kernel developers to focus

exclusively on security". https://devstyler.io/blog/2021/
02/25/google-funds-2-linux-kernel-developers-to-focus-
exclusively-on-security/

○ IBM and others also fund the Linux kernel. And actively
contribute to its source code.

● See: Log4j Zero-Day Vulnerability (CVE-2021-44228) Incident
● XKCD reference: https://xkcd.com/2347/

Economic models: corporate development and distribution

https://devstyler.io/blog/2021/02/25/google-funds-2-linux-kernel-developers-to-focus-exclusively-on-security/
https://devstyler.io/blog/2021/02/25/google-funds-2-linux-kernel-developers-to-focus-exclusively-on-security/
https://devstyler.io/blog/2021/02/25/google-funds-2-linux-kernel-developers-to-focus-exclusively-on-security/
https://xkcd.com/2347/

● Running software is complex, since it requires: compiling it, a hardware
infrastructure to run it (sometimes, a large distributed architecture or "the
cloud"), maintaining it, …

● Instead, a company can sell the paid product to run the service in their own
system, allowing for a remote execution.

● Related: Affero GPL license
● Examples:

○ Nextcloud for online file storage
○ Gitlab for git development
○ Wordpress blogs
○ …

Economic models: software as a service (SaaS)

● The company decided to license the product under two different licenses:
○ A FOSS license. For example, GPL
○ A proprietary license, which doesn't need to be copyleft-compatible.

● Examples:
○ Oracle MySQL. GPL (https://www.mysql.com/products/community) + proprietary license. The

proprietary products might evolve differently.
○ The R Project for Statistical Computing. GPL + proprietary licenses
○ Firefox with its 3 licenses

Economic models: dual licensing

https://www.mysql.com/products/community/#:~:text=It%20is%20available%20under%20the,both%20relational%20and%20NoSQL%20applications

● The community is interested in having some product
● A team of developers proposes a FOSS product
● The team receives donations to build the product

● Examples:
○ Kickstarter campaigns during the development of the product. Minimal amount needed.
○ Patreon: recurring monthly payments to support the team of developers

Economic models: crowdfunding

● Typically in SaaS
● The non-paid version of the service shows advertising
● The paid version doesn't

● Examples:
○ Kickstarter campaigns during the development of the product. Minimal amount needed.
○ Patreon: recurring monthly payments to support the team of developers

Economic models: advertising

● Duck Duck Go search example

Economic models: advertising

Case studies

● Complete free GNU/Linux systems: GNU/Linux distributions

● For scientific research: scikit-learn, matplotlib, numpy, scipy, Tensorflow,
Pytorch, Bioconductor, FFTW, Octave, Jupyter, IPOL, ...

● Widely used: LaTeX, Firefox, Chromium, LibreOffice, GIMP, VLC, Linux,
Blender, GNU C/C++ compilers, Python, Thunderbird, …

Case studies

● 9/10/2024: Nobel prize to David Baker, Demis Hassabis, and John
Jumper in Chemistry to reveal computationally the structure of proteins

● With AlphaFold2

● Apache 2 license
https://github.com/google-deepmind/alphafold/blob/main/LICENSE

Case studies

https://github.com/google-deepmind/alphafold/blob/main/LICENSE

This work is under the Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)
license. For more details: https://creativecommons.org/licenses/by-sa/4.0/

The images used in these slides are under the Fair Use provision, given that
they’re used only for this particular scholarly purpose.
Please contact me if any of the images should be removed.

https://creativecommons.org/licenses/by-sa/4.0/

	Diapositiva 1
	Some milestones in computing_clipboard0
	Diapositiva 3
	Diapositiva 4
	Diapositiva 5
	Some milestones in computing_clipboard1
	Diapositiva 7
	Some milestones in computing_clipboard2
	Diapositiva 9
	Some milestones in computing
	Image: Mikhail Leonov/Shutterstock
	Free software and the GNU project
	Diapositiva 13
	The four freedoms of free software
	Free and open-source software
	Free and open source software
	Free and open source software
	Other kind of software
	Software licenses
	Classification of software licenses
	Example of public domain license: ELIZA (1966)
	Example of a free-software license: GPL (1989)
	Example of a free-software license: AGPL (2007)
	Example of an open-source license: LGPL (1991)
	Example of an open-source license: MIT (1991)
	Example of an open-source license: MIT (1991)
	Diapositiva 27
	Example of a proprietary license: Zoom (2022)
	Diapositiva 29
	Creative commons licenses
	Creative commons licenses_clipboard0
	Diapositiva 32
	Dual licensing
	Dual licensing_clipboard0
	Diapositiva 35
	Dual licensing: example
	Take-home messages
	Software and patents
	The idea of patents
	Software and patents
	Current situation
	Some computer-related patents
	Diapositiva 43
	Actually impossible to patent software? No
	Why not software patents?
	Economic models of FOSS projects
	Economic models
	Diapositiva 48
	Economic models: auxiliary services
	Diapositiva 50
	Diapositiva 51
	Economic models: corporate development and distribution
	Economic models: software as a service (SaaS)
	Economic models: dual licensing
	Economic models: crowdfunding
	Economic models: advertising
	Economic models: advertising
	Case studies
	Case studies_clipboard0
	Diapositiva 60
	Diapositiva 61

