FAIR data Management plan

Miguel Colom https://mcolom.perso.math.cnrs.fr/

Discussion

- Should we consider data as source code + "files"? Or should we separate source code and extra files?
- Different licenses for sources and data?
- Different management plans?

Discussion: how do you manage your data?

- How many of you use "data" in your projects?
- Do you or your lab have a specific "data management plan"?
- How do you reference your data from an article or source code?
- Where do you store your data?

Discussion: how do you manage your data?

- Could your data disappear and the links to it get broken if the provider disappears? Is it perpetually preserved?
- What is more important? The software or the data? In classic methods? In modern AI methods?
- Do you add a version number to your data?
- What if you need to change the data? Say, a bug in the code that generated it for an article

Discussion

• What would you require to data to be useful for scientific research?

FAIR data

- **FAIR** is an acronym for:
 - Findable
 - Accessible
 - Interoperable
 - Reusable

The "FAIR" term first appeared in:

Wilkinson, M. D., et al. (2016). "The FAIR Guiding Principles for scientific data management and stewardship." *Scientific Data*, 3, 160018. https://doi.org/10.1038/sdata.2016.18

Discussion

- Isn't Google o chatGPT just enough to find the data?
- What do you think is "findable" data?
- What do we need to make data "findable"?

Requirements to be Findable, from Winkinson's article:

- F1. (meta)data are assigned a globally unique and persistent identifier
- F2. data are described with rich metadata
- F3. metadata clearly and explicitly include the identifier of the data it describes
- F4. (meta)data are registered or indexed in a searchable resource

Case study: Zenodo

- F1. (meta)data are assigned a globally unique and persistent identifier
 - OK, each record has a DOI
- F2. data are described with rich metadata
 - OK, it uses the DataCite's Metadata Schema
- F3. metadata clearly and explicitly include the identifier of the data it describes
 - OK, the DOI is included in the corresponding metadata record
- F4. (meta)data are registered or indexed in a searchable resource
 - OK, Zenodo search engine, and indexing with DataCite servers

An example of retrieving metadata with Zenodo's REST API

The NexusStreets dataset contains human and autonomous driving scenes. They are collected by monitoring a target vehicle that can be either autonomous or controlled by a human driver. Data is presented in the shape of:

- · sequences of JPEG images, one image per timestamp
- · target vehicle state information for each timestamp

Record 7682484.

Let's do it! On Linux: \$ curl https://zenodo.org/api/records/7682484 > record.json \$ firefox record.json

Discussion: do we have everything we need for findability? Would you add anything else?

- A1. (meta)data are retrievable by their identifier using a standardized communications protocol → OK, in Zenodo we used the ID 7682484.
 - A1.1. The protocol is open, free, and universally implementable → OK, we used HTTPS and JSON
 - A1.2. The protocol allows for an authentication and authorization procedure, where necessary → OK, to modify our own records, but it was not needed for reading
- A2. Metadata are accessible, even when the data are no longer available → Let's see an example...

A2. metadata are accessible, even when the data are no longer available → Let's see an example: https://zenodo.org/records/13340731

- Let's see another example: https://www.kaggle.com/datasets/sanjanchaudhari/facebook-dataset? select=FB.csv
- **Discussion:** is the data accessible?

\$ curl https://zenodo.org/api/records/13340731 > obsolete.json
\$ firefox obsolete.json

Discussion: why would you keep an obsolete record? Why not simply removing everything?

FAIR data: INTEROPERABLE

- I1. (meta)data use a formal, accessible, shared, and broadly applicable language for knowledge representation → For example, the Fast Healthcare Interoperability Resources (HL7) has proper keys for medical data
- I2. (meta)data use vocabularies that follow FAIR principles \rightarrow That's kind of a circular definition ;)
- I3. (meta)data include qualified references to other (meta)data

curl -X GET "https://hapi.fhir.org/baseR4/Observation?subject=Patient/example" -H "Accept: application/fhir+json"

• The response refers to a vocabulary and interoperable attributes: https://hl7.org/fhir/vitalsigns.html

FAIR data: INTEROPERABLE

- An example of a non-interoperable format:
 - An Excel spreadsheet
 - The format is controlled by a company and could change. Not an standard
 - It requires the use of proprietary software
 - It's got limited machine-readability capability
 - Not necessarily linked to a particular and standard vocabulary
- **Discussion**: can you think about other non-interoperable formats? What is the current situation? Have you ever faced problems related to the format of the data?

- An example of a non-interoperable format:
 - An Excel spreadsheet
 - The format is controlled by a company and could change. Not an standard
 - It requires the use of proprietary software
 - It's got limited machine-readability capability
 - Not necessarily linked to a particular and standard vocabulary
- **Discussion**: can you think about other non-interoperable formats? What is the current situation? Have you ever faced problems related to the format of the data?

- R1. meta(data) are richly described with a plurality of accurate and relevant attributes
 - R1.1. (meta)data are released with a clear and accessible data usage license →
 Discussion: why a license is needed for reusability?
 - R1.2. (meta)data are associated with detailed provenance → Indeed, without the details of the origin of the data, we cannot trust it. Or to cite it properly.
- R1.3. (meta)data meet domain-relevant community standards → For example, a medical dataset has a specialized vocabulary, which wouldn't be useful to describe the dataset of images for autonomous driving

- An example of a non-reusable dataset
- https://up42.com/goingup/high-resolution-satellite-data
 - Commercial license, restricting derivative works and redistribution
 - Very limited provenance metadata, or information about the processing chain

- An example of a satellite image dataset which is reusable: Sentinel 2 data
- See, for example: https://eos.com/products/crop-monitoring/satellite-data-api

```
{
  "id": "S2A_MSIL2A_20230515T105031_N0509_R094_T30TVK_20230515T132812",
  "platform": "Sentinel-2A",
  "instrument": "MSI",
  "processingLevel": "Level-2A",
  "creationDate": "2023-05-15T13:28:12Z",
  "processingBaseline": "05.09",
  "datatakeIdentifier": "GS2A_20230515T105031_033010_N05.09",
  "producer": "European Space Agency",
  "orbitNumber": 33010,
  "tileId": "T30TVK",
  "cloudCover": 5.12,
  "processingCenter": "IPF",
  "license": "Copernicus Sentinel data (2015-present), open access"
```

- Provenance: platform, instrument, processingLevel, dates, ...
- License (open access)

The data management plan

FAIR formats

- Text: JSON, XML, CSV, TXT, ...
- Datasets: they depend on the discipline. For example, geoJSON for spatial data, FASTA for genomic sequencing, or HL7 FHIR for clinical records
- Databases: they structure internally the data with some binary format. Make sure you use a free/open source program that defines the format and allows for reading it. Examples: MongoDB (for JSON-like documents), Redis (for high performance, storage in RAM), Neo4j (network analysis)

FAIR formats

- Images: use standard lossless format, to avoid loss of information. For example, PNG, TIFF. But not JPEG!
- Audio: again, standard lossless formats. For example, avoid MP3 (lossy, proprietary), and use instead FLAC or WAV.

FAIR license

• **Discussion:** do you add a license to your released data? Why? Would it be OK not to add a license, if you don't case about what people can do with your data?

FAIR license

- Any dataset you produce must come along a license
- Without a license, users don't have any rights! All is forbidden by default: no reuse, no redistribution, no modification, no derivative works, ...
- Certainly, this is not what you want...

FAIR license

- Which license?
- Data is different from software. Avoid software-specific licenses (GPL, BSD, ...)
- Creative Commons (CC) are adequate licenses. For example, CC-BY (with attribution, and full reuse)
- Specifically for datasets, you have ODC-BY
- And many others. It's important to pick a license that allows to get credit (that's important for you as a researcher) and also allows reuse

- You need to organize your files in folders, and give names. Check how this is done by your community in your field
- Make the structure and naming of your files reflect the organization of the data. For example: europe/spain/madrid/temperature/12-06-2025/15h00.csv
 - This allows to navigate through the data easily
- Use the expected formats and be consistent. For example, for the dates or times.
- Adhere to the corresponding vocabulary. For example, "temperature", and not "degrees"
- Ensure that you've added all needed files: for example LICENSE, VERSION or AUTHORS

- Add metadata
- There are several tools that can help you
- DataCite Metadata Generator.
 - https://dhvlab.gwi.uni-muenchen.de/datacite-generator/
- Metadata Wizard
 - https://www.usgs.gov/software/metadata-wizard
- Research Object Crate (RO-Crate)
 - https://www.researchobject.org/ro-crate/
- CKAN
 - https://ckan.org/
- Zenodo has its own tool for adding metadata
 - https://zenodo.org/

Discussion

- Do you know what is a hash function?
- How it might be useful for data consistency or identification?

- A hierarchical organizing allows to define intrinsic Permanent Identifiers (PIDs)
 - An intrinsic identifier is computed from the contents of the data itself
 - We'll see later an example of an intrinsic identifier (but for code), the SWHID

Consistency of your data

- Before publishing your data, it's important to ensure its consistency
- Computing hash-based control sums such as SHA1 is a good way
 - Some PIDs use them to provide *intrinsic* identifiers

Consistency of your data

- Ensure that the authors are well identified. For example, with the ORCID
- Add hints on what you would expect if the data is re-regenerated
- If you're using JSON: validate against a JSON schema
- If you're using a database, always enforce relational rules with foreign keys. Rules
- Ensure that you're using only terms from your chosen vocabulary
- Use automatic tools.
- For example FAIRshake: https://fairshake.cloud/

Sensitive data

- Some of your data might be sensitive
 - For example, you're building an anonymized dataset from medical data
 - After being anonymized, it can be FAIRly share
- There is specific regulation for sensitive data
 - The General Data Protection Regulation (GDPR), arts. 6 and 9 on medical data
- Check if you're even allowed to deal with a particular type of sensitive data! Designate an authorized responsible.

Sensitive data

- As a general rule, use encryption to protect private date
 - Multiple solutions for data encryption, both software and hardware
- When transmitting data from one place to another (say, a backup), always encrypt
 - Straightforward with openSSH (scp, rsync under ssh, etc.)
 - Avoid 3rd party services
- In general, the corresponding regulation state clearly the conditions for storage and transmission of sensitive data

Backup your data

- Especially when building a dataset, make regular backups of your data
- Compute hash-based control sums of your hierarchical data This allows to detect inconsistencies
- Make incremental copies of your data. This allows to get back to a consistent state
- The consistency should be checked not only at binary level, but at entity level. For example: is the ORCID of all the researchers listed in the dataset valid? Do the computed intrinsic identifiers correspond to the contents of the data?
- Use a RAID-1 (mirroring) storage to avoid losing data in case of a disk failure

Preserve your data

- A local copy is needed, but FAIR data needs to be made available to everybody
- Just making the dataset available online is not enough, since it needs
 - to be preserved for the long term (perpetually, ideally)
 - to be referenced with PIDs
 - to be searchable
- Thus, you need a proper platform to fulfill these minimal FAIR requirements
 - For data, Zenodo is a good choice, among others
 - For source code, Software Heritage is an excellent choice.
- Which data should I preserve?
 - It depends on the policy of each platform
 - For example, Software Heritage wishes to preserve all source code, including support or preprocessing code you might think it's not that relevant
 - Other platforms, especially for data, might expect some data curation or filtering
 - Check your funder requirements. Some will request to make source and data available, whereas others might ask for a time-limited embargo.

A few references

- Data Management Guida, Univ. of Cambridge https://www.data.cam.ac.uk/data-management-guide
- FAIR Data, A Quick Guide for Researchers https://think.f1000research.com/wp-content/uploads/2021/02/F1000Research-Open-Data-FAIR-Dat a-Quick-Guide.pdf
- Managing and sharing data. UK data archive. https://dam.ukdataservice.ac.uk/media/622417/managingsharing.pdf
- Data Management Plan checklist https://www.dcc.ac.uk/sites/default/files/documents/data-forum/documents/docs/DCC_Checklist _DMP_v3.pdf

Preserve your data

- A local copy is needed, but FAIR data needs to be made available to everybody
- Just making the dataset available online is not enough, since it needs
 - to be preserved for the long term (perpetually, ideally)
 - to be referenced with PIDs
 - to be searchable
- Thus, you need a proper platform to fulfill these minimal FAIR requirements
 - For data, Zenodo is a good choice, among others
 - For source code, Software Heritage is an excellent choice.
- Which data should I preserve?
 - It depends on the policy of each platform
 - For example, Software Heritage wishes to preserve all source code, including support or preprocessing code you might think it's not that relevant
 - Other platforms, especially for data, might expect some data curation or filtering
 - Check your funder requirements. Some will request to make source and data available, whereas others might ask for a time-limited embargo.

This work is under the Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) license. For more details: https://creativecommons.org/licenses/by-sa/4.0/

The images used in these slides are under the *Fair Use* provision, given that they're used only for this particular scholarly purpose. Please contact me if any of the images should be removed.

