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ABSTRACT

We propose a new denoising method for 3D hyperspectral
images for the future MetOp-Second Generation series satel-
lite incorporating the new IASI-NG interferometer, to be
launched in 2021. This adaptive method retrieves the data
model directly from the input noisy granule, using the fol-
lowing techniques: dual clustering (spectral and spatial),
dimensionality reduction by adaptive PCA, and Bayesian de-
noising. The use of dimensionality reduction by PCA has
been already proven an effective denoising technique because
of intrinsic data redundancy. We demonstrate here that by
combining a local PCA dimensionality reduction with a dual
clustering and a Bayesian denoising, it is possible to improve
significantly the PSNR with respect to PCA reduction alone.
This noise reduction hints at the possibility to multiply of
the resolution of the satellite by factor 4, while keeping an
acceptable SNR .

Index Terms— IASI-NG, denoising, clustering, Bayesian,
PCA

1. INTRODUCTION

In 2021 EUMETSAT will launch the first MetOp-SG satel-
lite carrying a new interferometer (IASI-NG) developed by
CNES'! to measure weather variables, pollution and climate
monitoring, and determining atmospheric gas composition
(including H,O,CO4, 03, N2oO,CO,CHy) [1, 2]. The in-
terferometer is made of 4 captors (one 4 x 4 PC MCT detector
for band B1, and MOVPE PV detectors for B2, B3 and B4)
which provide 16923 spectral channels between 15.5 and 3.63
pm with a spectral resolution of 0.125 cm™!, and a FOV of
4 x 4 pixels for a box of 100 x 100 km? at nadir [3]. The noise
level arriving to the captors is very low with respect to the
signal and in general for HS sounding applications lossless
compression is preferred to avoid damaging the data [4].

Our goal is to denoise 3D hyperspectral IASI-NG images
(also called granules) taking advantage of the large redun-
dancy of the data. A good enough denoising performance
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would simply permit to increase the satellite resolution. As a
rule of thumb, dividing the noise by a factor p would permit
to increase the resolution by the same factor. Denoising of HS
granules by using PCA and dimensionality reduction has been
already explored [5, 6, 7, 8], as well as the problem of group-
ing similar signals according to their wavenumber [9]. Here
we propose a Bayesian method to denoise IASI-NG granules
combining dual (spectral and spatial) clustering, a dimension-
ality reduction, and an optimal Bayesian method. We call this
method BBD.

2. THE NOISE MODEL

The IASI-NG instrument is made of four different HS cap-
tors with spectral overlapping of £40 cm™?, each of them af-
fected by additive Gaussian noise which depends on both the
wavenumber and the intensity (photonic noise). We take into
account the IASI-NG worst case for the photonic noise, and
therefore our noise model only depends on the wavenumber
(detector noise relying on the focal plane temperature, read-
out, and constant ADC noise).

Thus, it is possible to characterize the noise model as a
function which gives the standard deviation of the Gaussian
noise according to the wavenumber. Fig. 1 shows such a noise
level function. Its peaks are caused by the performance decay
at the extremity of bands. The amplitude of the signal is more
than 4700 times higher than the noise.

3. TIASI-NG SIMULATED NOISY DATA

The TASI-NG instrument is planned to be launched in 2021
and therefore there are no real granule data available. How-
ever, the noise model (Sec. 2) is known in advance and well
characterized, and it is therefore possible to generate reliable
simulations of the data. In the framework of an EUMETSAT
study, NOVELTIS and University of Basilicata have simu-
lated such TASI-NG data. This synthetic data are based on the
radiative transfer code o-IASI RT code [10], and takes into
account the TASI-NG configuration. To initialize the Radia-
tive Transfer computations several databases have been used
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Fig. 1. Noise level curve giving the standard deviation of the
noise according to the wavenumber. The noise depends only
on the wavenumber, but not on the pixel intensity (since only
the IASI-NG worst case for photonic noise is considered).

such as AVHRR products, ECMWEF, and MODIS data. The
spectra generated by the RT code were then processed to pro-
vide simulated L1C IASI-NG noise-free data, including the
apodisation step. These synthetic data have been validated
by performing a statistical analysis and comparing them with
geophysical features>. We consider the usual compression
technique known as bit-trimming, consisting in encoding the
floating point values at each pixel with a fixed number of bits.
The threshold is set to one quarter of the energy of the noise.

The procedure we use to simulate IASI-NG noisy data is
the following: (1) Use noise free data simulated using RT
code; (2) add wavenumber-dependent noise to the granule
(Fig. 1); (3) apply a simple bit-trimming and obtain the input
noisy granule, (4) denoise the input noisy granule and mea-
sure the denoising performance.

Fig. 2. Location of the seven IASI-NG granules.

2EUMETSAT internal report: NOV-7323-NT-3649_v4.2.

Fig. 3. Normalized Pearson’s correlation matrix for band B2
(from 115000.0 m~! to 195987.5 m~!) in granule #1. The
red color represents a high correlation, while white means low
(coolwarm color map). Most of the channels are correlated
with many of the others. Only a few frequencies are uncor-
related because of the presence of gases in the atmosphere at
those particular frequencies.

4. THE DENOISING ALGORITHM

This section describes the denoising method. Its pseudo-code
is given in Algo. 1. Most of the frequencies are highly cor-
related with the rest (see Fig. 3 and also the images acquired
in Fig. 4), with the exception of a few of them. A funda-
mental principle of denoising is to exploit the auto-similarity
of the data [11]. Thus, we build for each granule clusters of
frequencies by grouping highly correlated frequencies, with
the K-means clustering algorithm. We have fixed () = 32
clusters of frequencies, denoted as A; with i € [1, Q).

(a) 88362.5 m™!

(b) 96500.0 m~1!

Fig. 4. Simulation of the images acquired by the IASI-NG
instrument at different wavenumbers (granule #0, band B1).
The intensity of each pixel represents the energy measured in
Wm2sr~'m units.

Each A; contains highly-correlated frequencies for each
pixel. The next step is to reduce the dimensionality of each
pixel to N = 20 dimensions by PCA3. We verified empiri-
cally that 20 PCs are enough the represent reliably the IASI-
NG granules (Fig. 5). We denote by A the pixels in A; after
dimensionality reduction.

For each cluster A; we apply an adaptation of the NL-
Bayes algorithm [12], where P is the denoised pixel, and P
the noisy pixel after bit-trimming:

3We used the prcomp function in R.
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Fig. 5. Decay of the normalized explained variance according
to the sorted eigenvalues, in log scale.

P=P+[Cp—C,|C;! (P—F). (1)

C 5 is the empirical covariance matrix of the most similar
pixels in the cluster. We use the Pearson’s correlation coef-
ficient as the similarity criterion*. The empirical covariance
matrix C,, of the bit-trimmed noise after PCA transforma-
tion is required too. It needs to be computed only for the
wavenumbers in A;. Sec. 4.1 gives the details on how to
compute C,,. For each cluster A;, the NL-Bayes algorithm is
applied. Since each cluster contains only a part of the total
set of wavenumbers, each pixel is denoised partly at each it-
eration. After all iterations, the pixel is completely denoised.
Finally, the denoised pixels are unprojected (the data is ex-
pressed in the same axes as before the PCA rotation) and the
whole denoised granule is obtained.

4.1. Calculation of C,,

In this section we explain how to calculate the empirical co-
variance matrix of the noise C,, required in Eq. (1), under
PCA axes rotation. Let us define N as an n X p matrix con-
taining the noise. Each of the n rows corresponds to a par-
ticular noisy pixel observation and each of the p columns to
a variable (wavenumber) of the noisy pixel. The PCA re-
quires that the data is centered. In practice, the barycen-
ter of the set of noisy pixels is subtracted from each col-
umn. In our case, since the noise has zero mean along any
wavenumber, we can use directly N and compute its eigen-
values and eigenvectors. We shall call W the p x p matrix
which contains in its rows the normalized eigenvectors of IN.
Any wavenumber F; with j € [1,n] can be written in the
PCA rotated axes as F'; = WN. Thus, the entries of the co-
variance matrix at [j1, jo] are cov (F;,, F;,) = E (FlejT2) -

It can be computed quickly with the corrcoe f function in NumPy, for
example.

E(F;)E(F],) = E(F,F})
WE (F;, FT ) WT.

E (WF; FTWT)

0'?1 +U%J1 if jl :jg
0 otherwise,

and thus cov (F,,,F;,) = E(WDW?). The variance G%jl
is added because a bit-trimming compression is applied to the
noisy granule, which can be understood as adding a quantiza-
tion noise. Let us define B (F;) as the bit-trimming operator
applied to the pixels in a given wavenumber F;. Then,

We shallcallD = E (Fle;-.g) —

op, = var (|F; — B (F;)|). )

Finally, the empirical covariance matrix of the noise in the
rotated PCA axes can be written as

C,, = WDWT. (3)

5. RESULTS

To measure the performance of our denoising method we de-
fined the MSNR> metric as:

median(T))?

709

}, “4)

where 7 is a given wavenumber, T the testing granule, G the
reference noise-free granule, and MSE stands for the Mean
Squared Error. Note that the formula (4) is the same as the
usual PSNR for a wavenumber j, with the difference that we
use the median of the noisy granule instead of its maximum
value. The reason is to avoid the effect of outlier values which
would bias the measurement of performance.

Fig. 6 shows the MSNR plots of two granules® and com-
pares the MSNR of the noise (red), with our denoising method
(green), and the results obtaining by simply performing PCA
and keeping the N = 20 most significant PCs. As it can be
observed, since the signal is highly correlated (see Fig. 3),
simply applying PCA and keeping the most significant PCs
is an effective strategy. However, combining dimensionality
reduction with Bayesian denoising improves significantly the
result.

Table 1 shows the square root of the ratio between the
MSE:s of the noisy and denoised granules with respect to the
noise-free granule.

SMedian Signal-to-Noise Ratio.
6Similar results are obtained with the other granules.
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Fig. 6. MSNR denoising performances of two of the seven
granules analyzed. The reference is the noise-free granule
without bit-trimming. In red: the MSNR corresponding to the
noisy granule without bit-trimming. In green: the MSNR of
our denoising method, with bit-trimming. In blue: the de-
noising result only applying PCA dimension reduction with
N = 20 principal components, with bit-trimming. Since the
curves oscillate much, they have been filtered with a Gaussian
of o = 50 for visualization and comparison purposes.

6. CONCLUSIONS

We have presented a new method to denoise hyperspectral
3D images. This method has been successfully applied to
simulated IASI-NG spectra. IASI and TASI-NG data have
been used as example to demonstrate the denoising capabili-
ties and to illustrate the difficulties. However, the method is
general enough to be applied to other types of HS images by
choosing the right parameters {Q, K, N} in Algo. 1. The
method is unsupervised and uses several techniques to adapt
to the data of each particular granule: first it creates clus-
ters of frequencies to group data supposed to come from the
same physical origin, then it reduces the dimensionality of the
data by means of PCA based on the data of the granule, and
finally it uses another kind of clustering (in this case based
of inter-pixel correlation) to denoise the granule. The model
for the data (in the form of the covariance matrix of similar
pixels, Cp) is learned from the input granule itself instead

Granule #0 #1 #2 #3 #4 #5 #6

MSE(B(G),G)
\/W 353 | 473 | 425 | 479 | 423 | 3.49 | 4.85

Table 1. Denoising gain as the square root of the ratio be-
tween the MSEs of the bit-trimmed noisy and denoised gran-
ules with respect to the noise-free granule. Average: 4.27.

Algorithm 1 Denoise a IASI-NG hyperspectral image
1: Denoising
Input G: acquired noisy granule
Input Q = 32: number of spectral clusters
Input K = 400: number of similar pixels
Input N = 20: number of PCA PCs kept
Output G: denoised granule

. G = zeros(G..shape) > Placeholder
: Split the spectrum into @) frequential clusters A;, ¢ € [1, Q]
: for each cluster A;,¢ € [1,Q] do
A =PCA(A;, N) > Reduce dimensionality to N variables
Compute the covariance matrix C,, of the noise > Eq. (3)
for each noisy pixel Pdo

For the K most correlated pixels compute: (i) their mean

A

Pand (ii) their covariance matrix C g
9: Obtain the denoised pixel P using NL-Bayes ©> Eq. (1)

10: Acp > Store denoised P
11: end for

12: G(A;) < UNPROJECT(A) > Back to the original axes
13: end for

14: return G

of using a predefined model. The use of dimensionality re-
duction has two main benefits: first, after projection on the
PCA basis, the underlying signal and the noise are much sep-
arated, which allows a better comparison of the pixels taking
into account the signal in the first N = 20 PCs and not the
noise. This can be understood as some kind of oracle tech-
nique to find similar pixels, in analogy with explicitly oracular
methods like BM3D [13] . In our case, it is done implicitly.
The second benefit is that the drastic dimensionality reduc-
tion (from 16923 spectral channels to N = 20 PCs) speeds
up significantly the computations.

The quantitative results show that the combination of the
bi-clustering, dimensionality reduction, and Bayesian denois-
ing implies a gain in several dBs with respect to simply keep-
ing the most significant PCA PCs. The reduction of the noise
in a factor of 4 shown in Table 1 means that the surface of the
captor could be reduced in a factor 16 while keeping the same
performance. As future work, we aim to obtain denoising re-
sults for existing real IASI satellite images and use different
metrics to evaluate the denoising performance, as for example
the inter-channel correlation and the off-diagonal coefficients
of the noise covariance matrix before and after denoising.
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