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Abstract—The camera calibration parameters and the image
processing chain which generated a given image are generally
not available to the receiver. This happens for example with
scanned photographs and for most JPEG images. These images
have undergone various nonlinear contrast changes and also
linear and nonlinear filters. To deal with remnant noise in such
images, we introduce a general nonparametric intensity and
frequency dependent noise model. We demonstrate by simulated
and experiments with real images that this model, which requires
the estimation of more than 1000 parameters, performs an
efficient noise estimation.

The proposed noise model is a patch model. Its estimation
can therefore be used as a preliminary step to any patch-
based denoising method. Our noise estimation method introduces
several new tools for performing this complex estimation. One of
them is a new sparse patch distance function permitting to find
noisy patches with similar underlying geometry.

A validation of the noise model and of its estimation method
is obtained by comparing its results to ground-truth noise curves
for both raw and JPEG-encoded images, and by visual inspection
of the denoising results of real images. A fair comparison to the
state of the art is also performed.

Keywords: Blind noise estimation, signal-dependent noise,
frequency-dependent noise, nonparametric noise model, blind
denoising, multiscale estimation.

I. INTRODUCTION

HE noise initially present in a raw digital image is
transformed at each step of the processing chain of
the camera. When acquired at the focal plane in a color
filter array (CFA), the noise is Poisson distributed, intensity-
dependent and frequency-independent. Yet the image at the

CFA is possibly saturated, which infringes the simple linear
dependency of the noise variance with the intensity [1]. Even
without saturation, the variance of the noise may not follow
the linear model, depending on the characteristics of the
detector [2]. At the very first step of the camera processing
chain a demosaicing algorithm [3], [4] must be applied to
get a color image from the raw mosaic acquired at the CFA.
This causes the noise to be spatially correlated. It therefore
becomes frequency-dependent (and channel-dependent). The
colored noise caused by the demosaicing undergoes further
linear and nonlinear transformations such as white balance and
gamma-correction. Finally, JPEG-encoding [5] accentuates the
frequency dependence, as JPEG encoding applies a frequency-
dependent quantification matrix to the coefficients of the 8 x 8
DCT-II blocks of the image. Therefore, the remaining noise
in a JPEG image is signal dependent and highly correlated.
It generally contains little high frequency noise, as the DCT
quantization removes the image high frequencies. But it too
often still contains strong noise at the low and medium DCT
block frequencies. This annoying noise is hard to evaluate
and to remove. To deal with this problem we propose to use
a multiscale approach (see Sec. II-B) which allows one to
measure with increased spectral resolution the noise level at
low-frequencies.

Such noise characteristics are observed in modern digital
images, but also in scans of old photographs, which contain
chemical noise. The assumption that their final observed noise
is both signal and frequency dependent (SFD) is clearly a
minimal model. The purpose of this paper is to develop a



method for estimating such SFD noise, and to validate it by
comparing the estimated results to the appropriate ground-
truth.

Little has been written on SFD noise estimation from a sin-
gle digital image. A method estimating a “JPEG compression
history” from a single image can be found in [6]. The noise
estimation method for JPEG images proposed in [7] estimates
a signal dependent “noise level” which is not frequency depen-
dent. One of the most complete attempts to estimate a general
noise model is contained in the blind denoising method [8],
which estimates multiscale noise covariances for noise wavelet
coefficients. This model is nevertheless not signal dependent.
Another wavelet based method is [9]. The recent method for
estimating frequency dependent noise on patches in [10] is
probably the closest to our endeavor. We will detail the points
in common and the proposed extensions and improvements of
this method. To the best of our knowledge, no method has
proposed so far to estimate a general SFD noise patch model.
The situation is nonetheless favorable, as most homoscedastic
noise estimation algorithms are actually patch based [11], [12],
[13], [14], [15], [16], and can therefore be adapted to measure
SFD noise models on patches.

Plan of the paper

Sec. II develops the principles of blind noise estimation,
defines the signal and frequency dependent (SFD) model, and
explains progressively how to estimate it. Sec. III details the
proposed algorithm. Section IV performs a comparison of the
method with the current state of the art. Sec. V is the core of
the paper. It validates the sufficiency of the SFD model for
JPEG images by calculating a ground truth SFD model and
checking that it is indeed recovered by the algorithm. This
section also performs a final consistency check by displaying
denoising results obtained with a multiscale version of the
NL-Bayes algorithm [17], [18]. To that aim, it compares the
estimated noise model before and after denoising. Sec. VI
evaluates the noise estimations numerically, by comparing the
results with a known ground-truth. It also compares the PSNR
of our noise estimator applied to denoising with several state-
of-the-art methods. It discusses why an adaptive selection of
frequencies improves the results and compares it with the
alternative which assumes that the geometric information is
contained mainly in the low-frequencies and other assumptions
made by different methods. Sec. VI-B compares visually
the results of applying our noise estimator to the NL-Bayes
denoiser with several state-of-the-art noise estimation and
denoising methods, with both simulated AWGN and real
highly correlated noise in several images. Finally, Sec. VII
presents the conclusions.

This article develops the ideas of the conference paper [19],
namely the multiscale approach or the necessity of choosing
similar blocks to estimate the noise. However the method
introduced here to compare noisy patches while being robust
to the presence of textures is based on a new sparse distance.

II. BLIND NOISE ESTIMATION PRINCIPLES

This section defines the SFD noise model and its estimation
from well chosen blocks extracted from the image itself.
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A. The SFD noise model: the theoretical assumptions

A signal dependent model: The image formed at the
CFA contains noise that depends on the intensity of the
underlying image. This intensity dependence of the noise
model remains until the last step of the camera processing
chain (JPEG encoding). The value of the tabulated gamma
correction function is generally unknown. Even when this
information is available, the CCD or CMOS detectors do not
necessarily follow a simple linear relation intensity/variance
[2] when acquired at the CFA.

Therefore, the noise estimation algorithm must estimate
intensity-dependent noise. A common alternative is to trans-
form the data into homoscedastic noise via an Anscombe
transform [20], [21]. Yet an Anscombe transform is only
possible for raw images. In the general setting of a signal
dependency that can be different for every frequency, there is
no other way to estimate the signal dependent noise model than
dividing the set of blocks into disjoint bins, each for a different
intensity and to estimate a separate frequency-dependent noise
model on each intensity bin.

Assumption 1 The noise model is intensity dependent. There-
fore it can only be estimated on groups of patches having the
same intensity.

Fortunately, as recalled in [16], [22], it is possible to adapt
most patch-based homoscedastic noise estimation methods
[11] [12] [13] [14] [23] [24] to measure intensity-dependent
noise, by simply splitting the list of input blocks into sets of
blocks disjoint in mean intensity (bins) as will be done in lines
4-15 of Algorithm 1. We shall follow this lead.

Dealing with frequency dependency: the DCT diagonal
assumption: The main assumption underlying the proposed
algorithm is that the unknown linear and nonlinear transforms
that have been applied to the image can be approximated by a
diagonal operator on the DCT patch coefficients. There are two
arguments in favor of an (approximately) diagonal operator.
The first one is based of the following proposition (its proof
is straightforward).

Proposition 1: Every linear real symmetric filter applied to
an image is a diagonal operator on the DCT transform.
Because of boundary effects, this result is only approximately
true for the (local) block DCT. Second, JPEG 1985 also
is a diagonal (nonlinear) operator on the DCT coefficients.
The demosaicing operation itself is an edge adaptive complex
operation, but on smooth noisy regions it is close to a linear
isotropic interpolator, which again is a diagonal operator. This
leads us to the second assumption.

Assumption 2 A noise patch model is fully described by the
variances of its DCT coefficients.

These variances also depend on the patch (average) intensity
(Assumption 1).

Definition of the SFD noise model: The proposed signal
and frequency dependent (SFD) noise model follows from
Assumptions 1 and 2.

Definition 1: For each patch size w and each color channel
we call SFD model a function

(i,7,b) € [[0,w — 1]]* x [0, B — 1] — o (4,4, b),
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where (i,7) is the DCT frequency, w the block size, B the
number of intensity level bins, b the current bin, and o (i, j, b)
the observed noise standard deviation for this particular
frequency and bin.

To estimate an SFD model, it is enough to find sufficiently
many noise patches in a given image, and to apply to them a
DCT before measuring the variance of their DCT coefficients.
The main problem then is: how to find pure noise patches?

B. Finding patches with only noise

Blocks with minimal variance extracted from the image are
likely to contain no signal, and therefore only noise. This is
the low variance principle.

The recent method [10] proposed a clever way to extend the
low variance principle by involving image self similarity. The
idea is to associate with each block its most similar block in a
neighborhood. Then, assuming that this similarity is essentially
caused by the signal, the difference of both blocks becomes a
pure noise block, with twice the variance of the original noise.
In practice, however, most of the selected blocks correspond
to flat zones (as we shall see in the comments of Fig. 2). This
leads us in the next paragraph to refine the selection of noisy
patches.

A sparse semi-distance between patches: In [10] the
above mentioned patch distance is computed on the patches
after applying to them a DCT. We shall call such patches
DCT patches and denote them by m. In [10] the distance
of two DCT patches is computed on a random subset of
half the DCT frequencies when estimating the other half,
and conversely. Our goal is similar but the use of a patch
distance will be different. We want to detect noise patches by
comparing them to other patches and enhancing any suspicious
similarity, interpreted as the presence of signal in the patch. We
therefore propose to find first for each DCT patch mp a subset
of frequencies S (actually one fourth of the frequencies) that
are the most likely to represent the patch geometry. We shall
call them relevant frequencies. To obtain these frequencies
for a given reference patch mpg, all surrounding candidate
patches m¢ at a valid (taxi driver) distance r satisfying
ry, =4 < r < rg = 14 are analyzed in order to find the
frequencies whose coefficients exhibit the largest variation.
The condition 7; < r is to avoid an excessive overlapping
between the reference and the chosen blocks, to be able to
properly estimate spatially correlated noise. The condition
r < 7y is to reduce the search area [10], since block matching
is computationally expensive.

Definition 2: (relevant frequencies) For each reference
patch mp and a neighboring patch mc at valid distance,
we say that (i, j) is a relevant frequency for comparison of
mp and me if |[mgli, j]—mcli, §]| is among the “’{ﬁrst such
values in decreasing order. Set H (i, j) as the number of times
(i,4) has been retained as valid for all neighboring patches

me. We say that (i,7) is a relevant frequency for mpg if it is
2
w

associated with one of the “- highest values of H(i,j). The
set of relevant frequencies of mp will be denoted by S.

Definition 3: The sparse distance' between mc and Mg is
defined by

> Imgli, 4] - meli, ] x
(i,5)€S(mr) (D
max(|mg[i, j]|, [meli, j]).

SDsiv g e =

Given the set of relevant frequencies S for mpg, the first factor
of the distance, |mg[i,j] — mcli, j]|, penalizes the absolute
difference of the DCT coefficients in the blocks (the DCT
coefficients of similar blocks should be similar). The second
factor, max(|mgli, jl|, |mcli,j]|) adds more penalty when
the absolute value of the coefficient is higher. Indeed, the
definition of S suggests that the higher the absolute value of
the coefficient, the more contribution it has to the geometry
of the patch. The sparse distance is designed so as to enhance
any non casual resemblance with neighboring blocks, being
computed on the set of relevant frequencies of m¢ only. Our
principle is that the blocks showing the smallest sparse
distance to their neighbors are more likely than others
to be pure noise blocks. Fig. 2 shows the blocks selected by
Algo. 1 using the sparse distance of Eq. (1).

Notice that the above sparse distance is used here to detect
noise patches, not to group patches like in the classic patch
based denoising algorithms such as BM3D [25] or NL-means
[26]. Nevertheless it might be a good proposal to replace the
distance used in these algorithms, which is sensitive to noise.

III. NOISE ESTIMATION ALGORITHM

Our proposed SFD noise estimator (Algorithm 1) follows
from the definitions of the preceding section.

IHere, as often in mathematics and computer science, we call distance a
measurement that efficiently evaluates the resemblance between two objects
while not satisfying the classic axioms like the triangular inequality.



Algorithm 1 SFD noise estimation
1: Input : Noisy image u of size N, x IV, pixels.
2: Input : w x w size of the block in pixels.
3: Output : SFD noise curve &.

4: Extract from the input image all possible M overlapping
w X w blocks my, and compute their 2D orthonormal DCT-
I, my, ke {0...M —1}.

5: Set L=10 > Empty set.

6: for each reference DCT block mpg, R € {0...M — 1},
do

S = sd_freqs(mpg) > Def. 2
Find block m¢ that minimizes sparse distance

SDy, ,.me With frequencies S > Eq. 1
9: Extract from m [0, 0]/w the mean of mpg.
10: L < [Mmr, SDsp. mc] > Append
11: end for

12: Classify the elements of list L into disjoint bins according
to the mean intensity of the blocks.

13: for each bin, do

14: Obtain the set S, made by those DCT blocks in L in
the current bin whose SD is below the p-quantile, with
p = 0.005.

15: Assign intensity [ to current bin. > Eq. (4)

16: for each frequency [i,j] with [¢,j] € [0,w —
1]2,[i, 4] # [0,0], do

17: Compute the (biased) STD of the noise [I][i, j]

at the current bin for frequency [i,j] using the MAD

estimator, using the blocks in S,,. > Eq. (2)
18: Correct the biased 6[I][i,j] and obtain the final
STD estimate. > Eq. (3)
19: end for
20: end for

In the first step, all w x w (typically, w = 8 or w = 4)
overlapping blocks are extracted from the input noisy image.
The extracted blocks are indexed as my, with k € [0, M — 1].
M is the total number of overlapping blocks in the image.

For each of the reference DCT blocks m g, we have called
valid candidates the blocks whose taxi-driver distance r is
between r; < r < ro with vy = 4,ro = 14. The most similar
block to mpr among the valid candidates is denoted by m.

The similarity between mp and any other block in its
neighborhood is evaluated with the Sparse Distance (SD)
function (Eq. 1). For each mp in the image, a corresponding
most similar block m¢ is found, and mpr and the sparse
distance SD3, , 7 are stored in the list L.

Algorithm 1 computes the SFD model as defined in Def-
inition 1. The noise frequency being signal dependent, it
computes a “noise curve” b — o(i,j,b) for each frequency
(4, 7). To this aim, the block means are classified into a disjoint
union of variable intervals or bins of sufficient size. We found
that 42000 blocks/bin are sufficient to get an accurate noise
estimation, see [16], [22], [27].

For each bin, the list S, is filled in with the blocks whose
associated SD is below the p-quantile, with p = 0.005.
The value of p is small to ensure that only unstructured
noise blocks are kept. Finally, the standard deviation (STD)
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according to each frequency [i, j] € [0,w — 1]2, [i, j] # [0,0]
is computed using the MAD estimator using S, (Eq. 2).
o[1[i, j] = MAD(S,)

= median (

nes,

nli, j] — median (ﬁz[z,ﬂ)‘) . @
meS,

Eq. 3 gives the correction factor for the STD depending on
the size of the blocks, for p = 0.005. A correction of the STD
is needed because MAD is a biased estimator of the STD and
also because the available number of coefficients to compute
the (sample) variance is finite and thus biased. To obtain the
correction factors, we added simulated homoscedastic noise
of STD o = 5 to a synthetic image of a calibration pattern
with large flat zones of varied grayscale intensities. The biased
STD & was estimated with our algorithm and compared with
o = 5. The ratio o /& gives the correction factor.

51, ] = {”9 < olli.gl it w =4 0
1.65 x 6[1I][i,j] if w=S8.

The corresponding intensity I is computed with Eq. (4),
as the median of the mean intensities under the p-quantile of
blocks SD.

I = median (m[0, 0]/w) 4)
meS,

Discussion: should noise be estimated on block differ-
ences: Our purpose is to detect pure noise patches and
to estimate the noise model on them, after detecting them
as those with minimal sparse distance to their neighboring
patches (Algorithm 1). The proposal made in [10] to choose
the differences %(ﬁm — M) as noise block samples is
quite tempting. Indeed, the sparse semi-distance ensures that
in this difference the part of the signal that was contained
jointly in mp and m¢ has been canceled, thus giving a
pure noise sample. Nevertheless, we found that it was better
not to operate this subtraction, and that the noise estimation
based on the blocks mp such that mg — m¢ is minimal was
more accurate than the estimation based on the normalized
differences %(fn R — M¢). We can anticipate the following
explanation. Consider an image of pure Gaussian noise of
variance o2. Given a block g, and its most resembling
block m¢, the block mpr — m¢ will loose some of its noise
fluctuations. In this situation, the estimated noise can be
drastically underestimated. Since we estimate the STDs on
the blocks, not on differences, this problem is avoided, as will
be checked experimentally in section IV.

The multiscale approach to estimate low frequency noise:
The selection of noise blocks faces another dilemma: on the
one hand it is much easier to find small blocks (typically 4 x 4)
containing only noise, than larger blocks (for example 8 x 8
blocks.) Yet small blocks do not permit to estimate the noise
low frequencies. Such low frequencies are prominent in JPEG
images because of the demosaicing, which creates sometimes
long range correlation, and because of the JPEG compression
itself. So noise can appear in large spots, as shown in Fig.
10. This image is the result of convolving an image of pure
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Fig. 1. Measuring highly correlated noise using the multiscale approach.
Left: the w X w blocks fit inside the zone where it cannot measure the
very low frequencies of the noise and therefore the noise would be heavily
underestimated. Middle: after a first subsampling, the size of the spot is similar
to the size of the scanning block and the estimation is still invalid. Right: after
a third subsampling, the size of the scanning block is larger than the correlated
noise stains, and therefore the noise can be characterized.

Gaussian noise with mean 127 and o = 50 with the kernel G
in Eq. 5. A multiscale approach solves the dilemma. Defining
the input noisy image as the image at the first scale, a second
scale image can be obtained by a 2-subsampling. Estimating
again noise in this subsampled image permits to catch the
noise low frequencies. In the camera processing chain, after
the demosaicing step the noise is no longer Poisson and cannot
be approximated with a Normal distribution. Instead, it gets
spatially correlated, and it appears in the image in the form of
spots or stains, as shown in Fig. 10. In the DCT domain, the
noise is frequency-dependent and no longer homoscedastic.
If the noise is highly correlated (for example, after JPEG
compression and a small zoom-in of the image), it might
happen that the w X w scanning block is smaller than any
of the noise spots, or even that it fits inside. Fig. 1 shows an
example using an image with strongly correlated noise. In the
case on the left, the w x w blocks fit inside the zone where
it cannot measure the very low frequencies of the noise and
therefore the noise would be heavily underestimated. In the
case on the middle, after a first subsampling of the image, the
size of the spot is similar to the size of the scanning block and
the estimation would be invalid. In the case on the right, after
a third subsampling, the size of the scanning block is smaller
than the correlated noise stains, and therefore the noise can
be characterized. For images produced by reflex camera or a
smartphone, two scales are sufficient. In atypical cases where
the noise is strongly correlated (Fig. 15), more than two scales
might nevertheless be needed.

IV. COMPARISON WITH PONOMARENKO [10]

In this section we compare the proposed noise estimation
method with the current best state-of-the-art paper on estima-
tion of correlated noise [10]. This comparison will be a bit
stretched, as the method in [10] is only designed to estimate
frequency dependent noise, not SFD noise. We shall adapt it
to intensity-dependent noise for the comparison.

Our goal is to explore experimentally the influence of two
decisions taken in the design of our proposed SFD noise
estimation: We chose not to subtract similar blocks, and we
proposed a new similarity function (Eq. 1). In order to measure
the influence of the presence of texture in the image on the
performance of the compared noise estimation methods, we
shall use a synthetic noise-free calibration pattern (see Fig.

Fig. 2. Blocks selected by Algo. 1 using the sparse distance of Eq. (1) on
the traffic test image shown in Fig. 4 after adding homoscedastic noise of
STD = 10, for the bins #0 (a), #2 (b), #4 (c), and #6 (d) (7 bins are used).

Combined with traffic

Noise-free calibration pattern

Fig. 3. On the left, synthetic noise-free calibration pattern. On the right, the
weighted sum of the calibration pattern with the noise-free test image traffic
(with a ponderation of 80% of the calibration pattern and 20% of the traffic
image. Since both combined images are noise-free, the result is still noise-free,
but textured.

3, left). Since calibration patterns lack texture, it is easy to
find flat zones for which any variation of the intensity is due
to the noise, and therefore most noise estimation methods are
expected to perform optimally in such images. To simulate the
impact of textures, we considered an image that combines both
the calibration pattern and a noise-free image. Fig. 3 (right)
shows the noise-free image obtained by adding 80% of the
intensity of the calibration pattern and 20% of a noise-free
textured image traffic. As both combined images are noise-
free, the result is still noise-free, but textured.

To compare the influence of texture on each noise estimation
method, we added a simulated intensity-dependent noise with
variance 02> = 100 + 7u (u is the pixel intensity of the
combined image) to the combination of the calibration pattern
image with several noise-free images. We then estimated the
Root Mean Squared Error (RMSE) of the estimation for
all frequencies and intensity bins. The texture level of the
syncretic image aP + (1 — «)7 is controlled by «. P is the
calibration pattern and T the noise-free image that brings the
texture. We used the four noise-free images shown in Fig. 4.

Fig. 5 shows the RMSEs obtained for the test images in
Fig. 4 using 8 x 8 blocks. In the horizontal axis, the value



Flowers Traffic

Fig. 4. Noise-free images used to compare quantitatively the methods in
presence of texture. Each image is 704 X 469 pixels.

of a € [0,1] (the texture level) and in the vertical axis, the
RMSE along all frequencies and intensity bins.

We compared our method with the adaptation to intensity-
dependent noise of the Ponomarenko et al. method [10] for its
two variants: subtracting the blocks under the MSE quantile
(original method) and not subtracting them (see the discussion
of Sec. II). It can be observed (Fig. 5) that for low and
moderate texture levels it is better not to subtract similar blocks
before estimation. Compare the Ponomarenko method (labeled
Ponomarenko sub) with the variant which does not subtract
similar blocks (labeled Ponomarenko no-sub): the estimation
obtained without subtraction has a lower RMSE than when
performing it. It can be clearly seen that the proposed method
(labeled Proposed) gives a lower RMSE thanks to the use of a
better similarity function (Eq. 1). The new similarity function
is less affected by textures, since it takes into account in the
computation of the similarity only the coefficients that are
related to the geometry of the image and are not biased by
other coefficients carrying information from the noise (as it
happens in [10]). It can be observed that when the image is
mostly flat and no textured (like in Dice), the sparse similarity
performs similar to the Ponomarenko without subtraction
method, as expected. In general, the variant not subtracting the
blocks is better than the variant with subtraction, unless the
image is highly textured (see flowers, for example), where the
subtraction is able to cancel the contribution of the geometry
to the variance. In the average plot, it can be seen that both
the Ponomarenko with and without subtraction converge to a
similar RMSE when the level of texturization is high. The
proposed method has a better RMSE than [10].

V. VALIDATION WITH GROUND TRUTH JPEG NOISE

The proposed SFD noise estimation from a single image
uses the observation of blocks at many spatial locations
and will therefore be called here the spatial estimation. We
validated this spatial estimation by taking raw and JPEG
photographs with a digital camera. The value of the spatially
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Fig. 5. RMSEs obtained for the test images in Fig. 4 using 8 x 8 blocks.
On the horizontal axis, the value of a € [0, 1] (the texture level) and on the
vertical axis, the RMSE for all frequencies and intensity bins. The curves
compare the proposed method (blue curves) with the adaptation to intensity-
dependent noise of the Ponomarenko et al. method [10] with its two variants:
subtracting the blocks under the MSE quantile (original method, in green)
and not subtracting them (in red; see the discussion of Sec. II). In general,
avoiding the subtraction is the best option.

estimated STD on a single image should match the ground-
truth STD for that camera for the configured ISO speed [1].
This ground truth estimate is easily obtained from a burst of
consecutive frames, as we will explain now. Note that with
JPEG images we do not refer to the result of a mere JPEG
compression, but to the result of the whole camera processing
chain applied the raw image acquired at the focal plane of the
camera on the CCD (or CMOS), including demosaicing, white
balance, gamma correction, and JPEG encoding at the end.
The comparison setup takes a sequence of pictures of a still
scene with fixed camera position and constant lighting. Under
these conditions, any variation of the intensity in any pixel
through the sequence is only attributable to the effect of the
noise. It is therefore possible to build a ground-truth noise
curve for both raw and JPEG-encoded images, associating
with each observed mean signal value the corresponding STD
of its observed samples. Similarly, by frequency noise curve
we mean a numerical function associating with each value
of the block mean the STD of the DCT coefficient of the
noise at that frequency. This yields as many noise curves as
DCT coefficients. To obtain such curves, instead of measuring
the variation of the intensity of the pixels in a fixed position
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along the sequence, we consider all M overlapping w X w
blocks in the image, compute their orthonormal DCT-II, and
measure the variance at the intensity of the bin and frequency
[i,7] € [0,w — 1]%,[4, 4] # [0,0] along the coefficients of the
blocks at the same spatial position and with varying image
index.

The noise curve obtained this way for each DCT frequency
is called the temporal estimation and can be used as a
ground-truth to compare with the spatial estimation. Even if
a noise model for JPEG images has never been proposed in
the literature, it is still possible to obtain reliable empirical
curves for JPEG images. To obtain them, it suffices to JPEG-
encode each snapshot of the series with the same quality
parameter, and to apply the described procedure. Note that
the fixed pattern noise is also measured together with the
spatial estimation, but not at the temporal. However, it can
be neglected.

Our goal is to check if the spatial STD measured at any
frequency [i, j] € [0,w—1]%,[i, 5] # [0, 0] using the algorithm
in Sec. Il coincides with the STD of the temporal series
measured only at that frequency for all intensities. To build the
temporal STD noise curve we used 100 snapshots of the same
calibration pattern, for both raw and JPEG-encoded images.
In principle, any image might be used to get the temporal
STD of the noise, but it is preferable to use an object with
large flat regions of different gray levels, to avoid the effect of
texture in the temporal estimation. To be robust to outliers (the
edges between the large flat zones), we considered only the
0.05-quantile [23] of the STD estimations, which is corrected
afterwards to obtain an unbiased estimate.

The procedure to compute the ground-truth curve for JPEG-
encoded images for frequency [i, 5] € [0, w—1]2, [i, j] # [0, 0]
from a set of H images is detailed in Algo. 2.

In the sequel, we compare the results of the spatial esti-
mation to the ground-truth, for both raw and JPEG-encoded
images taken with a Canon EOS 30D camera with exposure
time ¢t = 1/30s, ISO speed 1600, and blocks of w x w DCT
coefficients with w = 4 and w = 8. Fig. 6 compares the
temporal and the spatial STDs for raw images and Fig. 8
shows the same for JPEG-encoded images with compression
factor Q = 92 for w = 4. Only coefficients [1, 1], [2,2], and
[3, 3] are shown, but equivalent results were obtained with all
15 coefficients. Fig. 7 and Fig. 9 show respectively the same
results for w = 8. Only coefficients [2,2], [5,5], and [7,7]
are shown for w = 8. The average curve for all coefficients
[i,7] € [0,w—1]2,[i, j] # [0,0] is also given in both cases on
the bottom-right of each figure.

Despite small oscillations in the spatial estimation, there is
an accurate match between both the spatial and temporal esti-
mations in the case of raw and JPEG images. Table I shows, for
raw and JPEG images using block sizes 4 x 4 and 8 x 8 pixels,
the standard error of the estimations given by the proposed
method along all frequencies [i, j] € [0, w — 1]%,[i, 7] # [0, 0]
for 400 raw images and 100 JPEG images. The mean of the
errors is also given. The standard error is small in both cases
(with more oscillation when estimating in JPEG images) and
the mean of the errors is close to zero. It can be concluded
that the method is able to estimate reliably SFD noise.

Algorithm 2 calculating the SFD ground-truth noise curve
from a sequence of images
1: Input : Sequence of H JPEG (or raw) images.
2: Input : w block size, [i,j] € {0,1--- ,w — 1}* DCT
frequency pair.
3: Output : Ground-truth noise curve i — &[i)[¢, j].

: Set M number of overlapping blocks.

Set Fy = E5 = E5 = zeros(M). > Array of size M

: for each JPEG (or raw) image u of the sequence, do
Extract from u its M overlapping w x w blocks By and

compute their 2D orthonormal DCT-II, 7, k € [0, M —1].

AN O

8: forke[OM—l]do

o0 Eifk] = Eu[k] + (i, 1)),

0 Esfk] = Balk] + i, .

11: Es[k] = Eslk] + my[0,0]/w. > The mean of By,
12: end for

13: Eq [k] =F; []f]/H

14: FEs> [k] = EQ[k]/H

15: Es[k] = Esk]/H. > Normalization
16: end for

17: Set L = array(M)
18: for k € [0,M — 1] do

1/2

190 Set L[k| = |12 (Ey[k] — (Eg[k])2)] /

20: end for

21: Classify the elements of list L into disjoint bins according
to the mean intensity F3[k] of the blocks. Each bin con-
tains (except the last) 42000 sample variance estimations.

22: for each bin b, do

23: Set X the means of the blocks in bin b.

24: Set Y the STDs of the blocks in bin b.

25: Get the 0.05-quantile of Y and set /i the mean in X
associated with it.

26 Assign the 0.05-quantile of Y to &[4, j].

27: Set &[fi][i, ] the 0.05-quantile of X. Set & the mean
at the quantile position in X.

28: Correct the bias of 6 due to the quantile and obtain
the final control point of the ground-truth for intensity [
and frequency [, j]:

> Array of size M

> STD

olplli, j] = 1.22 x o[z, j].

29: end for

TABLE I
STANDARD ERROR OF THE ESTIMATIONS GIVEN BY THE PROPOSED
METHOD ALONG ALL FREQUENCIES [i, j] € [0,w — 1]2,[i, 5] # [0,0] AND
THE MEAN OF THE ERRORS, FOR 400 RAW AND 100 JPEG IMAGES USING
BLOCK SIZES 4 X 4 AND 8 X 8 PIXELS. THE NEGATIVE SIGN IN THE MEAN
OF THE ERRORS MEANS THAT THE METHOD IS SLIGHTLY
UNDERESTIMATING THE NOISE. HOWEVER, IT CAN BE CONCLUDED THAT
THE METHOD IS ABLE TO ESTIMATE RELIABLY SFD NOISE.

Type Block w x w  STD all freqs. Mean of errors
raw 4x4 0.156 0.067
raw 8 x 8 0.191 -0.009
JPEG 4x4 0.678 0.486
JPEG 8x 38 0.663 0.338
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Fig. 10. Crop of the image of pure Gaussian noise with mean 127 and o = 50
after convolution with the kernel G in Eq. 5. The noise has spatial structure,
as it gets correlated after Gaussian convolution.

Fig. 11. Noise-free 704 x 469 pixels test image Computer.

Note that this test was performed with snapshots of the
calibration pattern, which is not textured and contains large
flat areas whose spatial variations are caused mainly by the
noise. Thus, the final validation must use real natural images
compressed with JPEG. Since a proper noise model for JPEG
encoding has not been already described, a visual comparison
of the quality of the images before and after denoising using
the frequency-by-frequency estimation given by the proposed
method is needed. This comparison is performed in Sec. VI-B.

We also evaluated the accuracy of the proposed method
by simulating colored noise and comparing the temporal
STD (ground-truth) with the spatial estimation given by our
algorithm for images of pure noise, frequency by frequency.
To obtain the temporal STD, we created a list of 210 blocks
of size 8 x 8 pixels made of simulated Gaussian noise of
mean 127 and o = 10 after applying a convolution with the
discrete Gaussian kernel G in Eq. 5. Fig. 10 shows a crop of
the convolved noise image, where it can be observed that it
contains spatial structure, as the noise is correlated because of
the Gaussian convolution.

1 4 7 4 1
L4 16 26 16 4

G=— 1|7 26 41 26 7|, )
213 14 16 26 16 4
1 4 7 4 1

Table II compares for several frequencies (first column),
the temporal STD obtained for the 210 8 x 8 blocks of pure
Gaussian noise of ¢ = 50 (second column), the spatial STD
estimation obtained by our method for pure noise (third col-
umn), and the spatial STD estimation given by our algorithm
after adding homoscedastic Gaussian noise of ¢ = 50 to the
noise-free test image computer in Fig. 11 (fourth column), all

TABLE II
THIS TABLE COMPARES FOR SEVERAL FREQUENCIES (FIRST COLUMN),
THE TEMPORAL STD OBTAINED FOR THE 210 8 X 8 BLOCKS OF
GAUSSIAN NOISE OF 0 = 50 (SECOND COLUMN), THE SPATIAL STD
ESTIMATION OBTAINED BY OUR METHOD FOR PURE NOISE (THIRD
COLUMN), AND THE SPATIAL STD ESTIMATION GIVEN BY OUR
ALGORITHM AFTER ADDING HOMOSCEDASTIC GAUSSIAN NOISE OF
o = 50 TO THE NOISE-FREE TEST IMAGE computer (FOURTH COLUMN),
ALL THREE AFTER CONVOLUTION WITH THE GAUSSIAN KERNEL G IN EQ.
5. BOTH STD ESTIMATION IN PURE NOISE AND IN A TEXTURED NATURAL
IMAGE MATCH WITH SMALL ERROR THE TEMPORAL STD. FOR THE
IMAGE OF PURE NOISE A SINGLE BIN IS USED AND 7 BINS FOR THE
computer IMAGE (SEE FIG. 4).

Frequency Temp. STD  Spatial (pure noise)  Spatial (computer)
[1,1] 31.952 26.840 30.205

(2,2] 21.902 19.379 20.338

(3,3] 9.588 11.01 10.510

[4,4] 3.512 3.731 3.747

(5, 5] 0.745 0.868 0.862

[6,6] 0.162 0.169 0.181

[7,7] 0.129 0.142 0.150

three after convolution with the Gaussian kernel G in Eq. 5
(see Fig. 4). Despite a small error, the proposed method is
able to measure accurately the STD of the noise for both pure
noise and textured natural images. If the STD of the noise is
below 0.4, the method is unable to estimate it accurately and
in some cases the MAD estimator gives negative values that
the algorithm sets to zero afterwards.

VI. DENOISING PERFORMANCE

In order to evaluate the performance of the proposed noise
estimation algorithm, this section performs several denois-
ing experiments and compares the PSNR obtained with our
method with several state-of-the-art methods, as well as dis-
cussing visual comparisons.

A. Numerical comparison

Once the STD of the noise at each intensity bin b and each
frequency [i,j] € [0,w — 1], [i,j] # [0,0] is known, it is
possible to fully characterize noise patches by their covariance
matrix. Thus, it is possible to denoise the image by obtaining
the covariance matrix of noise patches at each scale, and then
denoising each scale using the obtained noise profile. Since
the number of samples is divided by 4 after each subscaling,
the number of pixels of the input image is a limiting factor
(highly correlated noise cannot be measured in small images).
The Nonlocal Bayes [17], [18] algorithm will be used for
that purpose, as it only requires a knowledge of the noise
covariance matrix. In this method, the denoised version 131 of
a noisy patch P involves computing the covariance matrix C P
of the patches similar to P and the covariance matrix C of
the noise.

Py =P+[Cp—Cy]C; (P~ P) ©)

The covariance matrix of the noise C, in Eq. (6) is obtained
from the noise curve M; given the intensity i associated to



Fig. 12. Image made by the average of 46 JPEG images used as the noise-
free reference image to compare the PSNR of different denoising methods in
Table III.

the bin for a certain frequency. D is the orthonormal 2D-DCT
matrix and we have

Cy, = D'M;D 7

The details of the complete denoising procedure are out
of the scope of this noise estimation paper, and we refer the
reader to [18] for a complete description.

The first experiment consists on comparing the PSNR of
a JPEG compressed (quality factor = 92) image before
and after denoising. To obtain a noise-free (actually, with
negligible noise) reference image, we took 46 images of a fixed
scene and averaged all them. Fig. 12 shows the averaged image
we obtained. Each of the snapshots was taken with Canon EOS
30D camera, configured with ISO speed 1600 and exposure
time 1/30s.

Table III shows the obtained PSNRs. The 1st column indi-
cates the type of the image (JPEG or raw); the camera gives
both JPEG and raw versions at each shot. The raw image is
created by taking each color component in the CFA (dropping
one green), and creating an image four times smaller. The 2nd
column gives the PSNR between the noise-free image and one
of the single snapshots, to be used as a reference. The 3rd
column gives the PSNR obtained with our method. The 4th
column is a variant of our method which considers that the
textures are only in the low-frequencies of the blocks, instead
of determining which frequencies carry geometric information
(this variant is discussed later in the text). The 5th column
gives the PSNR obtained with the wavelets-GSM method [8].
Fig. 13 compares the denoising results of our method and
wavelets-GSM. Both methods are able to remove most of the
spatially correlated noise of the JPEG image. However, the
result of the GSM method is blurry (look at the letters on the
left) despite of having a better PSNR.

The PSNR after denoising improves with each of the
compared methods. However, it is well known that the PSNR
and similar numerical measures are not good indicators of
the visual quality of the images [28], [29], [30] and therefore
visual inspection of the denoising results is needed as well.

The next experiment compares the PSNR of several images
in the Berkeley database [31]. This database contains highly
textured images, which allow to compare the behavior of two
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TABLE III
PSNR OF THE NOISY (ORIGINAL SNAPSHOT GIVEN BY CAMERA), OUR
DENOISING RESULT, OUR DENOISING RESULT ASSUMING THAT THE
GEOMETRIC INFORMATION IS ALWAYS IN THE LOW FREQUENCIES
(OURS-LF), AND WAVELETS-GSM. BOTH JPEG AND RAW IMAGES ARE

USED.
Type noisy denoised ours denoised ours-LF  denoised GSM [8]
JPEG  30.66 31.17 31.30 32.06
raw 34.26 35.13 34.68 33.99
TABLE IV

PSNR MEAN RESULTS FOR 17 RANDOMLY SELECTED IMAGES IN THE
BERKELEY DATASET, FOR THE LIU ET AL. METHOD [7], WAVELETS-GSM
[32], PONOMARENKO [10], OUR METHOD, AND OUR METHOD ASSUMING
GEOMETRY ONLY AT LOW-FREQUENCIES (O-LF). “WINS” IS THE NUMBER

OF IMAGES FOR WHICH THE METHOD IS THE BEST ONE. FIRST AND
SECOND ROW: FOR 0 = 5%, THIRD AND FOURTH ROW: 0 = 10%.

Liu GSM  Ponomarenko [10] Ours O-LF
Wins 1 0 1 14 1
Mean 3299 3241 32.01 33.77 31.67
Wins 7 0 0 10 0
Mean 29.76 28.46 28.46 29.76 28.47

different state-of-the-art blind noise estimation and denois-
ing algorithms [7], [32] with our approach using the sparse
distance. The aim of the experiment is to show that when
the images do not contain much texture, the sparse distance
has a performance similar to the state-of-the-art methods, but
these methods perform poorly when texture dominates over
noise. Our method based on the sparse distance function has
a clearly better performance, as shown in Table IV. We use
the same images and AWGN noise levels used in [7], for the
sake of comparison. We compare the method by Liu et al.
[7], wavelets-GSM [32], our method, and a variation of our
method (referred as O-LF in the table).

In “O-LF” we apply exactly our noise estimation method,
but with one modification: instead of obtaining S with Def.
2, we set simply set S to use the low frequencies (see Eq.
8). That is, we force the algorithm to use the assumption that
states that the geometric information of the w x w blocks in
the image is given by the low frequencies of the blocks. Then,
S is passed to compute the distance between blocks by Eq. 1.

[i,4] € [0,3]%.

®)
The results in Table IV confirm first that the proposed
method gives a better PNSR compared to the two state-
of-the-art methods in blind noise estimation and denoising.
Second, the proposed method is able to separate better the
noise from the textures and therefore it has an increased
performance when the amount of noise is small. Third, the
proposed strategy which looks for the set of w? /4 frequencies
where the geometric information has been detected, is better
than the simple strategy which assumes that this information
is given only by low frequencies [33].
The PSNR is not a sufficient indicator to assess image
quality and visual comparison is needed. In Fig. 14 we

S[i, j] = 1 ifi+j£A0Ni+7<3,
= 0 otherwise.
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(b)

(d)

Fig. 13. (a) detail of the average of the 46 JPEG images, used as the reference noise-free image, (b) detail of one noisy JPEG snapshot as given by the
camera, (c) detail of the denoised image using our method, and (d) detail of the denoised image using the wavelets-GSM method [8]. Most of the noise is
removed in both methods, but wavelets-GSM blurs the image (look at the text on left).

compare the denoising results for the Liu et al. [7], our method,
wavelets-GSM [32], and the PCA [12] methods.

Note that the PCA method does not allow to estimate
signal-dependent or frequency-dependent noise, but only ho-
moscedastic noise. It is included in the comparison to show
the effect of not taking into account the intensity-frequency
dependence of the noise into the noise model. In our tests, we
adapted the method to signal-dependent noise [22], but not
to frequency-dependent noise (the estimated variance of the
noise is assumed to be the same in all w? DCT frequencies).

It can be observed (Fig. 14) that the proposed method is able
to remove most of the noise since it separates correctly the
noise from the textures of the image, thus keeping file details.
The method by Liu et al. is also able to remove the noise,
but most fine details are lost after denoising. In the case of
wavelets-GSM and Ponomarenko, even more details are lost.
In the case of the PCA method not much noise is removed,
since the presence of textures introduces an overestimation of
the noise which finally produces a poor denoising result (most
noise is kept).

Finally, Fig. 15 shows an image with highly correlated
noise, used in the article of Liu et al. [7]. The proposed method
gives a good result, since it manages to remove most of the
correlated noise (color stains) from the image. The method by
Liu removes some fine details of the image. The PCA method
is unable to remove correlated noise and therefore most of
the noise is kept. The GSM method is designed to remove
frequency-dependent noise, but it fails to remove it from this
image. Using a multiscale strategy as the one explained in this
paper might help GSM to characterize properly the very low
frequencies in this image, although this adaptation is out of
the scope of this paper.

B. Visual inspection comparison

Old photographs are particularly well adapted to an evalua-
tion with the proposed SFD noise estimation method. Indeed,
as such images involve two different successive acquisition
systems, one chemical and one digital, the noise model is
fully unknown and must be learnt from the image itself. There
is not, of course, any ground truth, but the visual inspection
of the removed noise gives a very good hit, since ideally it

should not show any geometric structure from the recovered
signal. To denoise JPEG digital images of old photographs,
we used a modified version of the NL-Bayes algorithm [17]
using the noise DCT coefficients estimated by our algorithm
in Sec. III. The details of the denoiser can be found in [18]. Of
course, other patch-based denoisers [8], [25], [26], [34], [35]
might be used instead but they would need to be adapted to
SFD noise first. For the denoising tests shown in this section,
we estimated the noise at two scales to go deeper in low
frequencies: a noise patch model was estimated at the finer
scale and a second noise model was also computed after a
Gaussian image zoom in.

Fig. 16 shows denoising results for images with unknown
noise model. In the first row, details of the noisy images; in
the second row, details of the denoised images; in the third
row, enhanced difference image (removed noise) between the
noisy and denoised image. The color spots in the difference
image and their random aspect at zones with the same intensity
indicate that the denoising algorithm removed colored noise
and, since details are kept at the denoised image, it can be
concluded that the noise estimation was successful.

Figs. 17 and 18 show the noise curves corresponding to
the low and high frequencies using DCT blocks of 4 x 4
coefficients, for the Apollo and Kleiner images. A coefficient
at frequency [i,j] € [0,3]? is assumed to belong to a “low-
frequency” if ¢ + j < 2 and to a “high-frequency” otherwise.
A detail of these images is shown in Fig. 16 (second and fifth
columns). Image Apollo was taken in 18 May 1969 during
the prelaunch tasks at the Launch Control Center’s Firing
Room 3 at the Kennedy Space Center’ and image Kleiner
is a picture of a tramway called “Kleiner Hecht” taken in
1998 in Dresden?. Both images contain large low-frequency
noise and JPEG compression artifacts. We show the mean
of the noise curves from the low-frequencies before (a) and
after (b) denoising, where it can be observed that most of the

2This file is in the public domain because it was solely created
by NASA. NASA copyright policy states that “NASA material is not
protected by copyright unless noted”. http://dayton.hq.nasa.gov/IMAGES/
LARGE/GPN-2000-001849.jpg

3Image licensed under the Creative Commons Attribution-Share Alike
3.0 Unported license, taken by Wikimedia Commons user Olaf1541. http:
/lcommons.wikimedia.org/wiki/File:Kleiner_hecht.jpg
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(a) Original (b) Noisy (o = 10%) (c) Ours (d) Liu et al. (e) GSM (f) Ponomarenko (g) PCA

Fig. 14. Comparison of denoising results. (a): Original image, (b): noisy image, with added AWGN of o = 10%, (c): denoising detail of our method, (d):
denoising detail of Liu [7], (e): denoising detail of wavelets-GSM [32], (f): denoising detail of Ponomarenko [10], (g): denoising detail of PCA [12].

(a) Noisy (b) Ours (c) Liu (d) PCA (e) Ponomarenko (f) GSM

Fig. 15. Denoising results with an image with strong highly correlated noise. (a): noisy image, (b): result with our method, (c) result with the method by Liu
et al. [7], (d) result using the PCA method [12], (e) result using the Ponomarenko method [10], and (f) result with wavelets-GSM [8]. Our method is able to
properly remove most of the noise in the image while keeping fine details.

Fig. 16. Denoising results of real images with unknown noise model. Top: detail of the noisy image. Middle: detail of the denoised image with our method.
Bottom: difference image (removed noise). The color spots in the difference image and its random geometry at zones with the same intensity indicate that
the denoising algorithm removed colored noise and, since details are kept in the denoised image, it can be concluded that the noise estimation was accurate.
In order to see clearly the low-frequency noise and the denoising results, the reader is invited to look at the images on the screen with a 400% zoom at least.
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Fig. 17. Noise curves corresponding to the low and high frequencies using
DCT blocks of 4 x 4 coefficients, for the Apollo image (a). A detail of this
image is shown in the second column of Fig. 16. (b) and (c): mean noise
curve at the low-frequencies before (b) and after (c) denoising. (d) and (e):
mean noise curves at the high-frequencies before (d) and after (e) denoising.
Most of the noise is at the low-frequencies. The noise level curves shown
correspond to the first scale.

noise remains at the low-frequencies of the image and that
is strongly reduced after denoising. We also show the means
for the high-frequencies before (c) and after (d) denoising.
Since JPEG quantizes the value of the DCT coefficients at the
high-frequencies (thus canceling most of them), the noise is
clearly lower than what is observed at the low-frequencies, but
nevertheless the noise could also be removed.

Fig. 19 compares the denoising results of our method with
wavelets-GSM. In the Apollo image (up), GSM is not able
to remove properly the highly correlated noise, while our
methods manages to do it with the multiscale strategy. In the
Kleiner image (down), the stones behind and the lines on the
ground are kept in our method, while GSM smooths the image
and loses these details.

VII. LIMITATIONS AND FUTURE WORK

Our blind method was validated by showing that the STD
obtained from temporal series giving ground-truth coincides
with the spatial STD given by the proposed algorithm, for both
raw and JPEG images. The denoising results show that indeed

13

Original noisy image Kleiner (a)

1o Noisy, low-frequencies (Kleiner, ,Qenoised, low-frequencies (Kleiner

10

"
o ® o

EY

Standard deviation
Standard deviation

N

i i L Ly
50 100 150 200 250 ° 50 100 150 200 250

Intensitv Intensitv

Low-fregs., noisy (b) Low-fregs., denoised (c)

1zNoisy, high-frequencies (Kleiner) anoised, high-frequencies (Kleiner)

"
"

/W
i} A\ Iy N

W T
50 100 150 200 250 50 100 150 200 250
Intensitv Intensitv

High-freqs., noisy (d) High-fregs, denoised (e)

Standard deviation
=

Standard deviation
S

Fig. 18. Noise curves corresponding to the low and high frequencies using
DCT blocks of 4 x 4 coefficients, for the Kleiner image (a). A detail of this
image is shown on the last column of Fig. 16 . (b) and (c): mean noise curve
at the low-frequencies before (b) and after (c) denoising. (d) and (e): mean
noise curves at the high-frequencies before (d) and after (e) denoising. Most
of the noise is present in the low-frequencies. Each curve has the color of its
corresponding channel (red, green, and blue). The noise level curves shown
correspond to the first scale.

our noise estimator is able to give an accurate estimation,
permitting to remove low frequency noise and to keep most
of the fine details.

Our next endeavor would be to adjoin an impulse noise
estimator to the nonparametric noise estimation model. Old
photographs can indeed present this sort of noise, in addition
to the SFD noise. Also the extension to video processing is
much needed and brings the advantage of disposing of still
more pure noise samples.

Nevertheless, our estimation algorithm cannot be applied to
any noisy image. For example, it does not apply if the noise
is space dependent (and not only SFD), as can be observed
in some synthetic images. Another limitation for estimating
highly-correlated noise is the size of the noisy image, since
at least two scales of the image are needed and the number
of available samples (pixels) for the second scale is divided
by four, which may become insufficient. Thus, if the image
is small and contains highly correlated noise, it may not be
possible to estimate it properly.



Fig. 19. Comparison of the denoising results for the Apollo (up) and Kleiner
(down) images. (a): detail of the noisy image, (b): detail of the denoising
result using the proposed method, (c) detail of the denoising using wavelets-
GSM [8]. Our method is able to remove most of the noise while keeping fine
details. In the Apollo image, GSM is not able to remove properly the highly
correlated noise, while our methods manages to do it with the multiscale
strategy. In the Kleiner image, the stones behind and the lines on the ground
are kept in our method, while GSM smooths the image and loses these details.
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