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ABSTRACT

We present a non-parametric method estimating an intensity
and frequency dependent noise from a single image. The
noise model is estimated on image patches and can be used
consequently in all patch-based denoising methods. The
method applies to cases where no access is granted to the
image noise model, in particular to scanned photographs and
JPEG images. The general noise model and the method to
evaluate it are validated by comparing the estimations with
the corresponding ground-truth curves for raw and JPEG im-
ages. Denoising experiments on scanned photographs also
support the efficiency of the estimation method.

Index Terms— Blind noise estimation, signal-dependent
noise, frequency-dependent noise, non-parametric noise
model.

1. INTRODUCTION

Noise in a digital image comes from several sources and it
is transformed at each step of the processing chain of the
camera. When it is acquired at the CFA, it is Poisson dis-
tributed, signal-dependent and frequency-independent. The
noise at the CFA is possibly saturated and will not obey the
simple linear dependency of the noise variance with the in-
tensity [1]. It sometimes does not follow at all the linear
model, even when no captor saturation occurs [2]. After de-
mosaicing [3, 4], the noise becomes spatially correlated [5, 6]
and therefore frequency-dependent. After gamma-correction,
it gets even more saturated and finally, after JPEG-encoding
[7] it turns into a strongly frequency-dependent noise. After
JPEG compression, most of the noise at the high-frequencies
is lost because of the coefficient quantization, but there re-
mains medium and low frequency signal dependent noise.
The situation is even more complex when we deal with a
JPEG image (or even a raw scan) of an old photograph, in
which case chemical noise is mixed with digital noise. In
such cases, the assumption that the resulting noise is both sig-
nal and frequency dependent is a minimal model to cope with
its complexity. Our purpose here is to find a general method
for estimating such complex noise, and to validate it by com-
paring the estimated results to the appropriate ground truths.

Our plan is as follows. Sec. 2 reviews the literature and
details the proposed noise estimation algorithm to measure
intensity-frequency dependent noise on JPEG images. Sec. 3
validates the noise curves obtained with the proposed method
by comparing them with the ground-truth (GT) curves for
each frequency obtained from a set of 100 snapshots of the
same calibration pattern. Sec. 3.1 performs a final validation
by displaying denoising results [8] with the NL-Bayes algo-
rithm [9]. Sec. 4 presents the conclusions.

2. NOISE ESTIMATION ALGORITHM

Little has been written on frequency and signal dependent
noise estimation from a digital image. A method estimat-
ing a “JPEG compression history” from a single image can
be found in [10]. The noise estimation method for JPEG im-
ages proposed in [11] estimates a signal dependent noise level
which is not frequency dependent and therefore only gives a
“noise level”. Probably the most complete attempt to esti-
mate a general noise model is contained in the blind denoising
method [12], which estimates multiscale noise covariances
for noise wavelet coefficients. This model is nevertheless not
signal dependent. To the best of our knowledge, no method
has proposed so far to estimate a general frequency and sig-
nal dependent noise patch model. The situation is nonethe-
less favourable, as most homoscedastic noise estimation algo-
rithms are actually block based [13, 14, 15, 16, 17], and can
therefore be adapted to measure signal and frequency depen-
dent noise models on patches. Following the review of these
methods in [18], we decided to adapt an existing frequency-
dependent method by Ponamarenko et al. [5] to estimate the
noise variance depending on both the intensity and the fre-
quency. Our proposed method follows:

1. Extract from the input image u of size Nx × Ny all
possible M = (Nx−w+1)(Ny −w+1) overlapping
w × w blocks Bk and compute their 2D orthonormal
DCT-II, B̃k, k ∈ [0,M − 1].

2. Set L = ∅ (the empty set).

3. For each DCT block m̃1 ∈ B̃,



(a) Find the block m̃2 that minimizes PMSEm̃1,m̃2

(Eq. 3). Consider only those blocks whose hor-
izontal and vertical distance with respect to m̃1

belongs to the interval [r1, r2] = [4, 14].

(b) Add block m̃1 and its PMSE, [m̃1, PMSEm̃1,m̃2],
to list L.

4. Extract 1 from m̃1 the mean of m1.

5. Classify the elements of list L into disjoint bins accord-
ing the mean intensity of the blocks [18, 19]. Each bin
contains (with the exception of the last) 42000 DCT
blocks.

Then, for each bin,

1. Consider the set Sp made by the DCT blocks inside the
current bin whose PMSE is below the p-quantile, with
p = 0.005.

2. Assign to the current bin the intensity I as

I = median
m̃∈Sp

(m̃[0, 0]/w) (1)

3. For each frequency [i, j] with [i, j] ∈ [0, w−1]2, [i, j] 6=
[0, 0],

(a) Compute the (biased2) variance of the noise at the
current bin and frequency [i, j] using the MAD
estimator (Eq. 4).

(b) Correct the biased variance and obtain the final
estimate

σ̃[I][i, j] = 1.967σ̂[I][i, j]− 0.2777. (2)

The correction function in Eq. (2) is obtained by adding
simulated homoscedastic noise to a set of noise-free images
and afterwards adjusting a linear function that returns the the-
oretical STD given the biased estimate σ̂[I][i, j]. The above
self-explanatory algorithm involves the following straighfor-
ward formulas:

PMSEm̃1,m̃2
:=

1

w2

w∑
i=0

w∑
j=0

(m̃1[i, j]−m̃2[i, j])
2(w2+1−i−j)2;

(3)

σ̂[I][i, j] = MAD(Sp) = median
ñ∈Sp

(∣∣∣∣ñ[i, j]−median
m̃∈Sp

(m̃[i, j])

∣∣∣∣) .
(4)

1This operation is fast since the mean of m1 can be obtained as
m̃1[0, 0]/w.

2The estimate is biased because of the MAD estimator and because the
variance is measured using a finite number of samples from L.

Unlike the original method that directly computes the
MSE between the DCT blocks, we propose to use a ponderated-
MSE (PMSE, Eq. 3) that gives more importance to the low-
frequencies of the blocks in the comparison, since most of the
geometric information is located there, whereas the random
variation at high-frequencies is mostly explained by the noise.
It should therefore be given less weight in the comparison.

Also, we found that storing block m̃1 instead of m̃1− m̃2

in step 3b (as the original method does), increases the accu-
racy. A deeper discussion about the effect of the subtraction
is beyond the scope of this short paper.

3. VALIDATION OF THE METHOD

The above proposed method gives an estimation of the stan-
dard deviation (STD) of the noise that depends both on the
intensity and frequency in a single image. It uses the observa-
tion of blocks at many spatial locations and is therefore called
the spatial estimation.

We can validate the spatial estimation method by taking
raw and JPEG photographs with a given camera. The value of
the spatially estimated STD on a single image should match
the ground-truth STD for that camera for the configured ISO
speed [1], obtained from multiple frames. For that purpose,
consider a sequence of images of the same scene taken with
fixed camera position and constant lighting. Under these con-
ditions, any variation of the intensity in any pixel through the
sequence is only attributable to the effect of the noise. It is
therefore possible to build a GT noise curve for both raw
and JPEG-encoded images, associating with each observed
mean signal value the corresponding standard deviation of its
observed samples. Similarly, by frequency noise curve we
mean a numerical function associating with each value of the
block mean a standard deviation (STD) of the DCT coefficient
of the noise at that frequency. Thus, there are as many noise
curves as DCT coefficients. To obtain such curves, instead
of measuring the variation of the intensity of the pixels in a
fixed position along the sequence, we consider allM overlap-
ping w × w blocks in the image, compute their orthonormal
DCT-II, and measure the variance at the intensity of the bin
and frequency [i, j] ∈ [0, w − 1]2, [i, j] 6= [0, 0] along the co-
efficients of the blocks at the same spatial position and with
varying image index.

The noise curve obtained this way for each DCT fre-
quency is called the temporal estimation and can be used
as a ground truth (GT) to compare with the spatial estima-
tion. Even if a noise model for JPEG images has never been
proposed in the literature, it is therefore possible to obtain re-
liable empirical GT curves for JPEG images. To obtain them,
it suffices to JPEG-encode each image of the snapshot with
the same quality parameter, and to apply the above described
procedure.

The objective of this section is to verify that the spatial
standard deviation (STD) measured at any frequency [i, j] ∈



Fig. 1. One snapshot of the calibration pattern used to mea-
sure the temporal oscillation of the pixel intensities. The tem-
poral STD is the GT of the spatial estimation.

[0, w − 1]2, [i, j] 6= [0, 0] using the algorithm in Sec. 2 co-
incides with the STD of the temporal series measured only at
that frequency for all intensities. To build the temporal STD
noise curve we used 100 snapshots of the same calibration
pattern (see Fig. 1), for both raw and JPEG-encoded images.
In principle, any image might be used to get the temporal STD
of the noise, but it is preferable to use an object with large flat
regions of different gray levels, in order to avoid the effect of
textures in the temporal estimation.

In the sequel, we compare the results of the spatial es-
timation to the GT, for both raw and JPEG-encoded images
taken with a Canon EOS 30D camera with exposure time
t = 1/30s, ISO speed 1600, and blocks of w×w DCT coeffi-
cients withw = 4. (This block size was chosen as particularly
adapted for JPEG denoising algorithms). Fig. 4 compares the
temporal and the spatial STDs for raw images and Fig. 5
shows the same for JPEG-encoded images with compression
factor Q = 92. Only coefficients [1, 1], [2, 2], and [3, 3] are
shown, but equivalent results are obtained with all 15 coeffi-
cients. The average of the estimations along all coefficients
[i, j] ∈ [0, w − 1]2, [i, j] 6= [0, 0] is also given. The compar-
ison results are similar for 8 × 8 blocks, although we do not
have space to show them in this short paper.

Despite small oscillation in the spatial estimation, there
is an accurate match between both the spatial and temporal
estimations in the case of raw and JPEG images. It can be
concluded that the method is able to estimate reliably signal-
dependent noise at each frequency.

Note that this test was performed with snapshots of the
calibration pattern (see Fig. 1), which is not textured and
contains large flat areas whose spatial variations are caused
mainly by the noise. Thus, the final validation must use real
natural images compressed with JPEG. Since a proper noise
model for JPEG encoding has not been already described, a
visual comparison of the quality of the images before and
after denoising using the frequency-by-frequency estimation
given by the proposed method is needed. This comparison is
performed in Sec. 3.1.

3.1. Denoising results

Old photographs are particularly adapted to evaluate our noise
estimation method. Indeed for such images that involve two
different successive acquisition systems, one chemical and

one digital, there is no way to evaluate a parametric noise
model. And there is of course no ground truth. Yet the visual
inspection of the noise gives a very good hint at its indepen-
dence from the (recovered) signal. To denoise JPEG digital
images of old photographs, we used a modified version of
the NL-Bayes algorithm [9] using the noise DCT coefficients
estimated by our algorithm in Sec. 2. Of course, other block-
based denoisers [12, 20, 21, 22] may be used instead. The
details of the denoiser can be found in [8].

Fig. 2. Denoising results of real images with unknown noise
model encoded with JPEG with unknown quality factor pa-
rameters. Left: detail of the noisy image. Middle: detail of
the denoised image. Right: difference image (removed noise).
The noise estimation method is validated, since the colored
noise is removed (see the color spots in the difference image
and its random geometry at zones with the same intensity)
whereas signal detail is kept.

Fig. 3 presents the noise curves corresponding to the
low and high frequencies of the JPEG image whose detail is
shown at the bottom of Fig. 2 using DCT blocks of 4 × 4
coefficients. A coefficient at frequency [i, j] ∈ [0, 3]2 is as-
sumed to belong to a “low-frequency” if i + j ≤ 2 and to
a “high-frequency” otherwise. The image is a scan from a
1983 postcard that was afterwards compressed with JPEG.
It suffered not only the degradation of JPEG lossy compres-
sion, but also other unknown digital and chemical acquisition
distortions. We show the mean of the noise curves from the
low-frequencies before (a) and after (b) denoising, where it
can be observed that most of the noise remains at the low-
frequencies of the image and that is strongly reduced after
denoising. We also show the means for the high-frequencies
before (c) and after (d) denoising. Since JPEG quantizes the
value of the DCT coefficients at the high-frequencies (thus
cancelling most of them), the noise is clearly lower that what
is observed at the low-frequencies, but nevertheless the noise
could also be removed.



0 50 100 150 200 250
Intensity

2

4

6

8

10

12

14

16

18

20

N
o
is

e
 S

T
D

Noisy, LOW-frequencies

Low-freqs., noisy (a)

0 50 100 150 200 250
Intensity

0

5

10

15

20

N
o
is

e
 S

T
D

Denoised, LOW-frequencies

Low-freqs., denoised (b)

0 50 100 150 200 250
Intensity

0

5

10

15

20

N
o
is

e
 S

T
D

Noisy, HIGH-frequencies

High-freqs., noisy (c)

0 50 100 150 200 250
Intensity

0

5

10

15

20

N
o
is

e
 S

T
D

Denoised, HIGH-frequencies

High-freqs, denoised (d)

Fig. 3. Noise curves corresponding to the low and high fre-
quencies of the JPEG image whose detail is shown at the bot-
tom of Fig. 2 using DCT blocks of 4 × 4 coefficients. (a)
and (b): mean noise curve at the low-frequencies before (a)
and after (b) denoising. (c) and (d): mean noise curves at the
high-frequencies before (c) and after (d) denoising. Most of
the noise is at the low-frequencies. The color of each of the
curves corresponds to each color channel of the image (red,
green, and blue).
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Fig. 4. Comparison of the temporal (GT, in green) and spa-
tial STD (in red) for the Canon EOS 30D in raw images for
ISO speed 1600 using blocks of 4× 4 DCT coefficients. The
temporal and spatial STD match despite some oscillation in
the spatial estimation. The curve at the bottom right is the
comparison between the averaged mean temporal STDs and
the averaged mean spatial STDs (along all frequencies except
DC), showing that in average both estimations match accu-
rately.
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Fig. 5. Comparison of the temporal (GT, in green) and spa-
tial STD (in red) for the Canon EOS 30D in JPEG-encoded
images with quality factor Q = 92 for ISO speed 1600 using
blocks of 4 × 4 DCT coefficients. The curve at the bottom
right is the comparison between the averaged temporal STDs
and the averaged mean spatial STDs (along all frequencies
except DC), showing that in average both estimations match.

4. CONCLUSION

We presented a non-parametric noise estimation method for
intensity-frequency dependent noise. It can be applied to im-
ages where the noise model is not available [2], as in the
case of JPEG images. Instead of assuming a prefixed noise
model and then obtaining the parameters that control it (as
parametric models do), our non-parametric method obtains
at the same time both the noise model for the patches and
its characteristics, that is, the noise estimation according to
the discovered model. The method was validated by showing
that the STD obtained at the temporal series (the GT) coin-
cides with the spatial STD given by the proposed algorithm,
for both raw and JPEG images. The denoising results show
that indeed the noise estimator is able to give an accurate esti-
mation, since low frequency noise is removed and most of the
fine details are kept. Our next endeavour would be to include
an impulse noise estimator to the non-parametric noise esti-
mation model. Old photographs can indeed present this sort
of noise. Nevertheless our estimation algorithm cannot be ap-
plied to any noisy image. For example, it does not apply if
the noise is space dependent (and not only signal dependent),
as can be observed in some synthetic images.
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