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ABSTRACT

Denoising is probably the operation with the highest impact
to improve image quality. Indeed the presence of noise hides
image details and limits other image improvements such as
contrast enhancement, color balance and gamma-correction.
An immense effort has been dedicated to improve denoising
methods, but most papers assume a fixed noise model, mainly
white Gaussian. Yet in most images handled by the public or
even by scientific users, the noise model is imperfectly known
or even unknown. Very little has been written on actual im-
age denoising methods including the noise estimation step.
In this paper we propose to estimate a rather general noise
model, both signal and frequency dependent, coupled with a
general denoising multiscale method able to cope with gen-
eral noise distortion, including JPEG compression. On noisy
images coming from various sources (JPEG, scans of old pho-
tographs,. . . ) we show perceptually convincing results, for
which of course no ground truth is available.

Index Terms— Blind Denoising, multiscale algorithm,
noise estimation, denoising

Note to referees: a demo of the Noise Clinic algorithm
is available on line at http://dev.ipol.im/˜colom/
ipol_demo/noise_clinic_exper_v6/

1. INTRODUCTION

Our goal here is to provide a “blind” image denoising method.
Its denoising part is preceded by an accurate noise estimate
made from the image itself. Our minimal assumption on noise
will be that it is signal and frequency dependent. This as-
sumption is for example compatible with noise in JPEG im-
ages, which is the result of a (signal dependent) Poisson noise
which has undergone a quantization of its DCT coefficients.
We shall see that a recent state of the art method, Nonlocal
Bayes (NL-Bayes), can be adapted to that purpose, but most
other denoising methods can be adapted as well. Our main
motivation comes from the fact that most image users in sci-
ence and technology do not actually dispose of both the raw
image and the noise model, but only often of an “end product”
which is not necessarily fully denoised and has anyway under-
gone several frequency and signal alterations. Thus, blind de-

noising must be able to cope with both raw and preprocessed
images of all sorts.

This helplessness of image users can be observed in the
journal IPOL archives of the online executions of six state
of the art or emblematic denoising methods (NL-means [1],
DCT denoising [2], TV denoising [3], K-SVD [4], BM3D [5]
and NL-Bayes [6]). Whereas it allows users to upload noise-
free images, to add the noise and denoise them, it appears
that most of submitted images are not noise-free images, nor
even white noise images, which leads to inefficient and even
misleading results. Only from this fact comes clear that the
demand for image denoising exceeds widely the white noise
case. “Blind” methods are required for a good diffusion of
state of the art image processing methods among other scien-
tific disciplines.

This blind denoising approach was studied by Javier
Portilla [7], [8], by Tamer Rabie [9] and by Liu, Freeman,
Szeliski and Kang [10]. For this purpose, Portilla modified his
state of the art denoising algorithm BLS-GSM and adapted it
to deal with homogeneous, Gaussian or mesokurtotic noise,
which provides the only state of the art blind denoising al-
gorithm to our knowledge. Liu, Freeman, Szeliski and Kang
proposed a unified framework for JPEG image for two tasks :
1) automatic estimation and 2), removal of color noise from
a single image. The paper proposed by Rabie seems less
effective and works only for Gaussian noise, where the blind
denoising filter is based on the theory of robust statistics.

Our plan follows from the above considerations. Sec-
tion 2 explains how the original NL-Bayes algorithm may be
adapted to the current general noise framework. The noise
estimation procedure is described in Section 3. Section 4 de-
tails the computation of the noise covariance matrix. Section
5 gives the multiscale denoising procedure. The final syn-
thetic description of the whole blind denoising method can be
found in Section 6. Some results on real noisy images with
unknown preprocessing and comparison with the state of the
art algorithm of [7] are presented in Section 7.



2. A QUICK REMINDER OF THE NL-BAYES
ALGORITHM

Like most current state of the art methods, NL-Bayes denoises
all noisy square patches extracted from the image and then
obtains the final denoised image û by replacing every image
pixel value by an average of the denoised values obtained for
this pixel in all denoised patches containing it. We shall de-
note by P̃ a reference patch extracted from the image, and by
P(P̃ ) the set of patches Q̃ similar to the reference patch P̃ .
Assuming that the patches similar to a given patch follow a
Gaussian model, a first basic estimation of the denoised patch
P can be obtained by

Pbasic = P̃ + [CP̃ −Cn]C
−1
P̃

(
P̃ − P̃

)
(1)

where P̃ is the average of patches similar to P̃ , Cn is the
covariance matrix of the noise and CP̃ is the covariance ma-
trix of the patches similar to P̃ . For pure Gaussian signal-
independent noise, we simply have Cn = σ2I.

Seeing the basic estimation as an “oracle”, equation (1)
becomes:

Pfinal = P̃
basic

+Cbasic
P̃

[
Cbasic

P̃
−Cn

]−1(
P̃ − P̃

basic
)
.

(2)
Then to adapt the original NL-Bayes algorithm to signal

dependent noise, one has to provide an estimated covariance
matrix of the noise Cni for every group of similar patches
P(P̃ ) according to its average intensity value i.

The way to obtain Cni is explained in section 4.

3. NOISE ESTIMATION

Most noise estimation algorithms capable of estimating the
noise variance according to the frequency can be easily
adapted to measure signal-dependent noise [11]. For the
Noise Clinic we adapted an existing method by Ponamarenko
et al. [12] to estimate the noise variance at each frequency.

The algorithm can be summarized as follows:

1. Extract from the input image (of size Nx ×Ny pixels)
all possible M = (Nx −w+1)(Ny −w+1) overlap-
ping w × w blocks (with w = 4) and compute its 2D
orthonormal DCT-II.

2. Set L = ∅ (the empty set).

3. For each DCT block m1,

(a) Look for the blockm2 that minimizes PMSEm1,m2

(Eq. (3)). Consider only those blocks whose hor-
izontal and vertical distance with respect to m1 is
belongs to the interval [r1, r2] = [4, 14].

(b) Add block m1 and its PMSE, [m1, PMSEm1,m2],
to list L.

4. Compute the mean of each block1.

5. Classify the elements of list L into disjoint bins accord-
ing to the intensity of the blocks [11]. Each bin contains
(with the exception of the last) 42000 elements.

Then, for each bin,

1. Consider the set Sp made by the blocks inside the cur-
rent bin whose PMSE is below the p-quantile, with p =
0.005.

2. Assign to the current bin the intensity I as the median
of the means of the blocks that belong to the bin2.

3. For each frequency [i, j] with [i, j] ∈ [0, w−1]2, [i, j] 6=
[0, 0],

(a) Compute the (biased3) variance of the noise at the
current bin and frequency [i, j] using the MAD
estimator (Eq. (4)).

(b) Correct the biased variance and obtain the final
estimate σ̃[I][i, j] = 1.967σ̂[I][i, j]− 0.2777.

PMSEm1,m2
:=

1

w2

w∑
i=0

w∑
j=0

(Dm1
[i, j]−Dm2

[i, j])2(w2+1−i−j)2.

(3)

σ̂[i, j] = MAD(Sp) = mediank [|Sp[k][i, j])−medianl(Sp[l][i, j])|] .
(4)

Note that with this approach it is not possible to estimate
the STD of the noise frequency [0, 0] (DC). However, since
the complete algorithm is multiscale (see Sec. 5), the missed
information of the STD of the noise at the DC in a given scale
is later recoved when the noise is estimated at the next scale.

4. HOW TO OBTAIN THE COVARIANCE MATRIX

At this point, we will suppose that for any given intensity i,
the multi-frequency noise estimate has provided us with k2×
k2 matrices.

Mi = E
(
DNi (DNi)

t
)

(5)

where:

• D is the matrix of the discrete cosine transform (DCT)
of size k2 × k2;

• Ni denotes the k × k stochastic noise patch model at
intensity i.

1This operation is fast since the mean of the block can be obtained by
dividing into w the value of the coefficient at frequency [0, 0].

2The means of the blocks have been already computed in step 4.
3The estimate is biased because of the MAD estimator and because the

variance is measured using a finite number of samples from L.



From equation (5) and the definition of the covariance ma-
trix of the noise, it comes for a given intensity i that

Cni = Cov(Ni) = E
(
NiN

t
i

)
= DtMiD.

5. THE MULTISCALE ALGORITHM

The state-of-the-art denoising algorithms such that DDID
(Knaus et al. [13]), BM3D (Dabov et al. [14]), NL-means
(Buades et al. [15]), K-SVD (Mairal et al. [16], [17]), Wiener
filters applied on DCT (Yaroslavsky et al. [18], [19]) or
on wavelet transform (Donoho et al. [20]) or even the to-
tal variation minimization (Rudin et al. [21]) achieve very
good results for moderate noise,for large noise many artifacts
inherent to each method start appearing, in particular low
frequency noise. A natural idea to deal with is to involve a
multiscale procedure, which promises three improvements:
1) it favors a better patch comparison, 2) at larger scales the
noise decreases, 3) subsampling the image before denoising
amounts to enlarge the real size of the neighborhood.

5.1. Down and Up Sampling

The sub-sampling is done by averaging four samples in the
higher scale without any overlapping. As there is four ways to
do it (depending on the starting pixel), the four sub-sampled
images are kept to avoid aliasing. Then the noise estimation
may work with the same amount of pixels at every scale. As
the four sub-images are shifted by ± 1

2 in both coordinate di-
rections, the up-sampling of higher scale pixels is done by
averaging their four neighbors, each one belonging to each
sub-image.

Figure 1 shows at each scale the result of the denoising.

5.2. Noise Estimation

If the input noisy image had pure Gaussian noise, then after
each sub-sampling the noise should be divided by two and
remain white. However, the proposed algorithm has been de-
veloped to deal with all kinds of noisy image, as shown in Fig-
ure 2 anything can happen to the noise curves, then the noise
covariance matrices must be estimated at each scale. As the
noise estimation is applied on the set of all sub-images for a
given scale, then the estimation have the same accuracy what-
ever the current scale is. Then for one scale, all sub-images
are denoised with the same set of noise covariance matrices.

Figure 2 shows an example of average noise curves over
high and low frequencies for a three scales noise estimation.

6. THE FINAL NOISE CLINIC ALGORITHM

Now that all parts of the Noise Clinic algorithm have been
detailed in the previous sections, we can summarize the whole
algorithm in Algorithm 1.

Fig. 1. Result of the Noise Clinic at each scale. From top to
bottom : scale 2, scale 1 and scale 0. From left to right : noisy
image, denoised image, difference image.

7. RESULTS AND COMPARISONS

A comparison with blind BLS-GSM introduced in [7] and [8]
is shown in Figure 3 on some images with different kinds
and values for the noise, extracted from [8]. Whereas for the
left image the Noise Clinic better succeed to remove all the
low frequency noise than blind BLS-GSM while preserving
details, it re-enforces the strong structured noise in the right
image, while blind BLS-GSM remarkably removes it. How-
ever one can argue that this structured noise may be seen and
treated as detail belonging to the image.

Results over an old photography and a JPEG image are
given in Figure 4. Both noisy images present a huge amount
of noise with artifacts, but the Noise Clinic manages to re-
move a lot of it, while well preserving details and structure of
the image.

8. CONCLUSION

The presented algorithm brings together state-of-the-art meth-
ods of both world of denoising and noise estimation to create
a simple and effective blind denoising algorithm. The link
is done via the covariance matrix of the noise. The power
of the proposed method lie in the fact that very few assump-
tions on the nature of the noise are done, which allows the
Noise Clinic to give really impressive and efficient results on
almost any natural image, even if it has been modified by de-
structive applications such as JPEG compression. This power



Fig. 2. Average noise curves. From left to right : low frequen-
cies, high frequencies. From top to bottom : scale 2, scale 1,
scale 0.

is strengthened by the multi-scale approach which allows to
efficiently remove low-frequency noise while preserving tiny
details.

However this method may still be improved by better
dealing with structured noise, or adapting the NL-Bayes al-
gorithm to have a better/more generic model than the current
Gaussian one for patches.

This algorithm may be tested on line at this address :
http://dev.ipol.im/˜colom/ipol_demo/noise_
clinic_exper_v6/
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