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Abstract—Arguably several thousands papers are dedicated
to image denoising. Most papers assume a fixed noise model,
mainly white Gaussian or Poissonian. This assumption is only
valid for raw images. Yet in most images handled by the public
and even by scientists, the noise model is imperfectly known
or unknown. End users only dispose of the result of a complex
image processing chain effectuated by uncontrolled hardware and
software (and sometimes by chemical means). For such images,
recent progress in noise estimation permits to estimate from a
single image a noise model which is simultaneously signal and
frequency dependent. We propose here a multiscale denoising
algorithm adapted to this broad noise model. This leads to a blind
denoising algorithm which we demonstrate on real JPEG images
and on scans of old photographs for which the formation model
is unknown. The consistency of this algorithm is also verified on
simulated distorted images. This algorithm is finally compared
to the unique state of the art previous blind denoising method.

Index Terms—blind denoising, multiscale algorithm, noise
estimation, denoising

I. INTRODUCTION

A. Motivations

BLIND denoising is the conjunction of a thorough noise
estimation method followed by the application of an

adapted denoising method. To cope with the broad variety of
observed imaging noises, the noise model must be far more
comprehensive than the usual white Gaussian noise. Our lead
example will be JPEG images from digital CCD or CMOS
cameras, where the initial signal dependent white Poisson
noise has undergone nonlinear transforms, linear filters and a
quantization of its DCT coefficients. After such alterations, a
signal, frequency and scale dependency is a minimal assump-
tion for the remaining noise. This requires dealing with a noise
model depending on hundreds of parameters, in contrast with
the usual one-parameter Gaussian white noise and the two-
parameter Poisson noise. A flexible denoising method must
also be conceived to cope with this signal, scale, and frequency
dependent noise model.

To be useful to all image users, who generally have only
access to the end result of a complex processing chain, blind

denoising must be able to cope with both raw and preprocessed
images of all sorts. The archives of the online executions at the
IPOL journal of six classic denoising methods, namely DCT
denoising [26], TV denoising [9], K-SVD [13], NL-means [3],
BM3D [10] and NL-Bayes [12] are replete with such puzzling
noisy images. IPOL users are in principle requested to upload
noiseless images, to which the noise is added on line to test the
performance of each algorithm. Yet, as one can observe in this
public archive, the demand for a blind denoiser is so strong that
more than 10000 noisy images have been unduly uploaded.
This shows how necessary “blind” methods are, for diffusing
image processing techniques in science and technology.

B. Antecedents
We found only a few references on blind denoising ap-

proaches: Portilla [19], [18], Rabie [20] and Liu, Freeman,
Szeliski and Kang [14]. Portilla’s method is an adaptation
of the famous BLS-GSM algorithm, which models wavelet
patches at each scale by a Gaussian scale mixture (GSM), fol-
lowed by a Bayesian least square (BLS) estimation for wavelet
patches. This method is in principle adapted to homogeneous,
Gaussian or mesokurtotic noise. Yet, according to the author,
the GSM model provides an automatic way to separate noise
from signal. Indeed, for natural images, a GSM captures for
the wavelet coefficients both high kurtosis marginals and a
positive covariance between neighbor coefficient amplitudes.
These coefficients are not shared by Gaussian or lower kurtosis
noise sources. Then, for each wavelet subband a correlated
Gaussian model can be used to estimate the noise and a
correlated GSM is used for the signal. This algorithm is fully
automatic, and will be compared to our results in Section VI-C.
Our proposed solution shares many features with Portilla’s
method. Our noise model is nonetheless more general, being
signal dependent, and our patch model is local, while the GSM
wavelet patch model is global. (A recent local version of BLS-
GSM [21] obtains a better performance than BLS-GSM.)

Liu, Freeman, Szeliski and Kang [14] proposed a unified
denoising framework for JPEG images with two tasks in
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view: 1) automatic estimation and 2) removal of colored noise
from a single image. These steps are performed by involving
a piecewise smooth image model and a segmentation. The
authors introduce the so called “noise level functions” (NLF)
to estimate the noise level as a function of the image grey level.
The obtained noise curve by their algorithm is an estimate
of an upper bound of the real NLF, done by fitting a lower
envelope to the standard deviations of per-segment image
variances. In their denoising procedure, the chrominance of
the colored noise is significantly removed by projecting pixel
values onto a line fitted to the RGB values in each segment.
Then, a Gaussian conditional random field is constructed
to obtain the underlying clean image from the noisy input.
Unfortunately no code is available for this complex procedure.

The method proposed by Rabie [20] seems less effective
and works only for Gaussian noise. Here the blind denoising
filter is based on the theory of robust statistics. The denoising
part is done by minimizing a stationary cost function. For an
adaptive window around the pixel of interest, noise pixels are
seen as outlier pixels and rejected according to the Lorentzian
robust estimator. The noise is basically estimated over a flat
area of the noisy image. “Optimal-size” adaptive windows are
used to obtain the largest area containing relatively uniform
structures around each pixel of interest. The uniformity is
based on a local signal variance estimate. This method seems
less general than Portilla’s method, since it can only deal with
a signal-independent Gaussian noise. Observing the results
shown in [20], indicates that this method mainly works on
images with large homogeneous areas. An entropy-based noise
level estimator has been proposed in [8], which may work
for any sort of noise. Unfortunately it delivers a noise level
but not a noise model. So we could not use it for noise
estimation. Our denoising method will be based on a noise
signal and frequency noise estimator proposed by Colom et al.
[6], relying on a general principle proposed by Ponomarenko
et al. [17] to build a noise patch model. This method is proved
in the aforementioned reference to estimate accurately the
variances of DCT coefficients of noise patches in a JPEG
image. We shall see that it can be easily extended to cope
with a scale dependency.

Plan of the paper Section II gives a brief account of the
original NL-Bayes algorithm and details why and how it can
be adapted to the current general noise framework. Section
III gives the noise model and details the computation of the
noise covariance matrix at each scale. Section IV describes
the multiscale denoising procedure and details the up-and
down-sampling operations. Section V validates the method on
simulated noisy JPEG images and filtered images. This section
ends with a final synthetic description of the whole blind
denoising method. Section VI is the experimental section, with
experiments on real noisy images with unknown history. A
thorough comparison is also performed with the reproducible
method [19].

II. A GENERALIZED NONLOCAL BAYESIAN ALGORITHM

Most denoising methods in the literature focus on Gaus-
sian white noise, which is a reasonable simplification of the

problem, since for example Poisson noise can be transformed
into approximately white Gaussian noise by the Anscombe
transform [1]. In this section we show that one of them,
the NL-Bayes method, designed for Gaussian white noise,
can be extended to deal with a signal, scale and frequency
dependent noise. NL-Bayes only requires the knowledge of a
local Gaussian patch model and of a Gaussian noise model.
It is therefore possible to extend the noise model to obtain
a denoising method compatible with a scale- and signal-
dependent noise.

Like other patch based denoising methods, NL-Bayes de-
noises all noisy square patches extracted from the noisy image
ũ and then obtains the final denoised image û by replacing
every image pixel value by an average of the denoised values
obtained for this pixel in all denoised patches containing it. We
shall denote by P̃ a reference patch extracted from the image,
and by P(P̃ ) a set of patches Q̃ similar to the reference patch
P̃ . Assuming that Q̃ follows a Gaussian model, a first basic
estimation of any denoised patch Q from the 3D group can
be obtained [11] by

Qbasic = P̃ + [CP̃ −Cn]C
−1
P̃

(
Q̃− P̃

)
(1)

where
• Q̃ is a generic patch from P(P̃ );
• P̃ is the empirical average of the patches similar to P̃ :

P̃ ' 1

#P(P̃ )

∑
Q̃∈P(P̃ )

Q̃; (2)

• Cn is the covariance matrix of the noise;
• CP̃ is the empirical covariance matrix of the patches

similar to P̃ , which may be obtained by

CP̃ '
1

#P(P̃ )− 1

∑
Q̃∈P(P̃ )

(
Q̃− P̃

)(
Q̃− P̃

)t
. (3)

For pure Gaussian signal-independent noise with variance σ2,
we simply have Cn = σ2I. The above estimate would be
the optimal Bayesian estimate, if CP̃ and P̃ were the true
covariance matrix and expectation of the patches similar to
P̃ . In a second step, all the denoised patches obtained after
the previous first step estimation can be reused by a classic
Wiener argument to obtain a better unbiased estimation Cbasic

P̃
for the covariance of the 3D group containing P . Similarly, a

new estimation P̃
basic

of the average of patches similar to P
can be obtained. This leads to a second Wiener-Bayes estimate

Qfinal = P̃
basic

+Cbasic
P̃

[
Cbasic

P̃
−Cn

]−1(
Q̃− P̃

basic
)
.

(4)
a) Adaptation to Signal-Dependent Noise: As formulas

(1) and (4) show, the above Bayesian principle is compatible
with a patch noise model Cn depending on each patch P̃ . The
above formulas only require a good estimate of the covariance
matrix of the noise associated with each group of similar
patches. The algorithm computing this matrix is given in
Section III. The noise model being signal dependent, for each
intensity i in the range intensity [0, 255] of the image a noise
covariance matrix Cni will be available. The noise model for
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each group of patches similar to P̃ will depend on P̃ through
their mean i. The reference intensity for the current 3D group
P(P̃ ) must therefore be estimated to apply formulas (1) and
(4) with the appropriate noise covariance matrix. This intensity
is simply estimated as the average of all pixels contained in
P(P̃ ).

b) Local Correction of the Covariance Matrix: The de-
noising performance strongly depends on the noise covariance
matrices estimation. If the matrices {Cni}i∈[0,255] are not
accurate enough, denoising can cause ugly artifacts, partic-
ularly in the first step. The noise estimation procedure from
the image is always at risk of an overestimation, particularly
when the image is small or when it contains a uniform texture
which becomes undistinguishable from colored noise. If Cn

is overestimated, then (1) risks adding “negative noise” to the
image, because of the −Cn term in this equation. Thus, a
conservative estimation strategy must be applied on the first
Bayesian step to avoid noise overestimation artifacts. This
strategy ensures that the noise variances are always smaller
than the noisy patch variances. This sanity check based on the
diagonal values of both CP̃ and Cn covariance matrices leads
to the following more conservative estimate of the diagonal
elements of the patch covariance matrix used in (1):

∀p ∈ [[0, k2 − 1]],CP̃ (p, p)← max (CP̃ (p, p) ,Cn (p, p)).
(5)

c) Homogeneous Area Detection: The original NL-Bayes
algorithm [11] has a statistical test to determine if a 3D group
belongs to a homogeneous area, and in this case the estimation
of all patches is replaced by the global mean over all pixels
contained in the 3D group. This criterion is merely based on
the comparison of the empirical standard deviation of all pixels
of P(P̃ ) with σ2.

In our generalization of this algorithm, σ doesn’t exist since
Cn 6= σ2I. So this criterion must be adapted to better take into
account Cn in the following way:
• First, compute the difference of the traces of both covari-

ance matrices for each channel c,

δc = Tr(CP̃ )− Tr(Cn). (6)

• Denote by ˆ̃Q a first estimation of Q̃ a generic noisy patch
from P(P̃ ) obtained by (1). Then the basic estimate is
∀Q̃ ∈ P(P̃ ),

Qbasic =


P̃ if δc < αTr(Cn)
ˆ̃Q if δc > βTr(Cn)

t ˆ̃Q+ (1− t)P̃ otherwise.

(7)

where
t =

δc − αTr(Cn)

βTr(Cn)− αTr(Cn)

and

P̃ =
1

#P(P̃ )k2
∑

Q̃∈P(P̃ )

k∑
p=1

k∑
q=1

Q̃(p, q)

The thresholds (α, β) are chosen equal to
(
−1

3
,
1

3

)
. This

(optional) correction which generally increases the PSNR is

only used for the first step of the finest scale of the multiscale
algorithm.

III. OBTAINING THE COVARIANCE MATRIX OF NOISE
PATCHES

Colom et al., [6], proposed an adaptation of the Pono-
marenko et al. [17] method estimating a frequency dependent
noise to estimate noise in JPEG images. Given a patch size
k × k, the method extracts from the image a set with fixed
cardinality of sample blocks with very similar patches in DCT
space, which are therefore likely to contain only noise. These
noise blocks are transformed by a DCT, and an empirical
standard deviation of their DCT coefficients is computed. This
gives a noise model that is proved in [6] to be accurately
consistent with noise observed in JPEG images. This algorithm
computes for every intensity i with a multi-frequency noise
estimate given by a k2 × k2 matrix

Mi := E
(
DNi (DNi)

t
)

(8)

where:
• D is the k2 × k2 matrix of the discrete cosine transform

(DCT) ;
• Ni denotes the k × k stochastic noise patch model at

intensity i.

A. Are Noise Covariances Negligible in the Block DCT Space?

The method of the preceding section only estimates the
variances of the DCT coefficients of noise blocks and not their
covariances. The covariance matrices are therefore assumed
to be diagonal, which amounts to assume that the DCT
decorrelates the noise. A formal argument can be given in
favour of this assumption. Assume that the initial image
noise was white Gaussian, and that the image has undergone
a symmetric, real, periodic linear filter H . Then this filter
corresponds to applying a diagonal operator to the image in
the DCT frequency domain. Thus the noise covariance of the
filtered noise remains diagonal in the DCT domain. Yet, this
argument is only valid for a global image DCT. Here, because
we need a signal dependent noise model, we are estimating it
on local DCTs applied to each block. It is therefore no more
true that the blocks have undergone a periodic convolution
filter. Thus, it cannot be exactly true that after the application
of a global linear filter, the noise block DCTs have a diagonal
covariance. To check nonetheless the quantitative validity of
this assumption, we tested three different filters applied to
white noise:

• H1 with coefficients 1
4

(
1 1
1 1

)
supported by the pixels

(− 1
2 ,−

1
2 ), (

1
2 ,

1
2 ), (

1
2 ,−

1
2 ), (−

1
2 ,

1
2 );

• H2 the centered filter with coefficients

1
16

 1 2 1
2 4 2
1 2 1

;

• H3 the centered filter with coefficients

1
88

 1 2 4 8 4 2 1
2 4 8 16 8 4 2
1 2 4 8 4 2 1

.
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k 4 6 8 16
mean {|Ci,j |}i 6=j 0.83 0.48 0.31 0.10
mean {|Ci,j |}i=j 24.89 25.31 24.95 24.73

median {|Ci,j |}i 6=j 0.04 0.03 0.02 0.01
median {|Ci,j |}i=j 19.42 17.14 16.28 14.41

TABLE I
STATISTICS OF THE ESTIMATED DCT COVARIANCE MATRIX OF NOISE

FILTERED BY H1 .

k 4 6 8 16
mean {|Ci,j |}i 6=j 0.48 0.28 0.19 0.06
mean {|Ci,j |}i=j 14.59 13.95 14.45 14.23

median {|Ci,j |}i 6=j 0.010 0.008 0.005 0.002
median {|Ci,j |}i=j 6.75 4.50 3.77 2.35

TABLE II
STATISTICS OF THE ESTIMATED DCT COVARIANCE MATRIX OF NOISE

FILTERED BY H2 .

The noise image ũ was a 256×256 Gaussian white noise with
mean 128, and standard deviation σ = 20. After convolution,
we extracted N distinct k × k patches {Pn}n∈N from the
image and a 2D normalized DCT was applied on them. Finally,
their empirical k2×k2 covariance matrix C was computed as

∀(p, q), (a, b) ∈ [[0, k − 1]]2,

C(p, q, a, b) =
1

N

N∑
n=1

P̂ (p, q)P̂ (a, b)

− 1

N2

(
N∑

n=1

P̂ (p, q)

)(
N∑

n=1

P̂ (a, b)

) (9)

where P̂ denotes the 2D DCT of P . To simplify the notation of
C(p, q, a, b) (which is a 2D matrix and will be further denoted
by C(i, j)), one should denote (p, q) (resp. (a, b)) by i (resp.
j), where practically i = pk + q (resp. j = ak + b).

These covariances matrices can be visualized by the ab-
solute value of their coefficients |Ci,j |, normalized in [0, 1]
so that the largest coefficient is set equal to 1, and the
smallest equal to 0. The following colour code is used in the
visualization: a coefficient appears in blue if it is near 0; in
green if it is near 0.5 and in red if it is near 1. The results
for various patch sizes are shown in Figure 1. This illustration
and the quantitative tables I, II and III confirm that the block
DCT noise covariance matrices are nearly diagonal.

So from now on, only variance coefficients will be consid-
ered in DCT space.

B. Covariance Matrix Filtering

Since the noise covariance matrices can only be estimated
for sparse bins in the intensity range, an interpolation must

k 4 6 8 16
mean {|Ci,j |}i 6=j 0.22 0.15 0.10 0.04
mean {|Ci,j |}i=j 9.28 8.94 9.04 8.51

median {|Ci,j |}i 6=j 0.020 0.016 0.010 0.003
median {|Ci,j |}i=j 3.32 2.86 2.44 1.73

TABLE III
STATISTICS OF THE ESTIMATED DCT COVARIANCE MATRIX OF NOISE

FILTERED BY H3 .

Fig. 1. Visualization of the noise covariance matrices in DCT space after
applying filter H1 to illustrate that it is almost diagonal. From left to right,
patch size k = 4, 6, 8.

be applied to obtain a noise covariance matrix of the noise
for each given intensity. The covariance matrices must be
smoothed before such an interpolation. This can be obtained
by a regularization of the covariance matrices in DCT space
before applying the inverse DCT to get back a covariance ma-
trix in the image domain. We found that a robust regularization
could be performed in the following two steps:

1) For each frequency independently, perform a linear inter-
polation between the bin values to obtain a noise curve
for this frequency, giving the variance as a function of
the signal i. Smooth this curve by applying a sliding
average;

2) For every bin, replace each matrix coefficient by the
median of its four neighbours and itself.

Since the filtering is channel independent, the pseudo-code
only describes the filtering for one channel.

d) Getting Back to the Space Domain: For a given
intensity i, the covariance matrix of the noise is by definition

Cov(Ni) = E
(
NiN

t
i

)
which leads to

DCov(Ni)Dt = DE
(
NiN

t
i

)
Dt

= E
(
DNiN

t
iDt

)
= E

(
DNi (DNi)

t
)

= Mi

(10)

thanks to equation (8). Since D−1 = Dt , then from equation
(10) we get

Cov(Ni) = DtMiD. (11)

IV. THE MULTISCALE ALGORITHM

A. Why a multiscale algorithm?

Classic denoising algorithms such as BM3D (Dabov et al.
[7]), NL-means (Buades et al. [2]), K-SVD (Mairal et al.
[15], [16]), Wiener filters applied on DCT (Yaroslavsky et al.
[25], [24]) or on wavelet transform (Donoho et al. [23]) and
the total variation minimization (Rudin et al. [22]) achieve
good results for moderate noise (σ ≤ 20). Yet for larger
noise artifacts inherent to each method (and different for
each method) start appearing. In particular all keep an often
disturbing low frequency noise. A natural idea to deal with
low frequency noise is to involve a coarse to fine multiscale
procedure, which promises three improvements:

1) in the patch-based methods, it favors a better patch com-
parison, because the patch low frequencies are denoised



IEEE TRANSACTIONS ON IMAGE PROCESSING 5

before grouping them by similarity for denoising their
higher frequencies;

2) at coarse scales the noise decreases by zoom out, and
state-of-the-art algorithms work better;

3) subsampling the image before denoising amounts to
enlarge the size of the neighborhood on which the
denoising is performed, thus permitting to grab and
remove low frequency noise on larger regions.

A still stronger argument in favour of a multiscale procedure
is that in most images submitted by users, the main bulk of the
noise is contained in the low frequencies. This is explainable
by several factors. In accurately scanned old photographs,
the chemical noise is over-sampled and its grain has low
frequency components. In JPEG images, compression has
strongly attenuated high frequency noise components, but the
low frequency components after the third octave are intact.

Fig. 2. A multiscale process is required to remove the low frequency noise.
This is particularly apparent in the flat image regions. From left to right: Noisy
image (σ = 30), result of the “Classic NL-Bayes”, result of the multiscale
(three scales) NL-Bayes.

To define a coarse to fine multiscale structure, we proceed
by a classic oversampled wavelet denoising strategy [5]. The
image is convolved by a Haar “mother wavelet”, which is
nothing but a box-filter F where each lower scale pixel is
the mean of four samples in the higher scale. This cumulates
the advantage of dividing the noise standard deviation by two
and of maintaining the independence of the samples after
down-sampling. By this process white noise remains white
after subsampling. A classic objection to this wavelet method
is that the sub-sampled image is aliased and cannot be up-
sampled after denoising. The classic wavelet method avoids
this obstacle by denoising simultaneously the three wavelet
components obtained by convolving the image with the three
Haar wavelets, before reconstructing the finer scale. Yet when
dealing with patch based methods, it is better to keep all
frequency components together to perform a better nonlocal
patch comparison. For this reason the proposed multiscale
algorithm keeps and processes four channels that are partly
redundant. The four channels are obtained by moving the sub-
sampling grid by respectively (0, 0), (1, 0), (0, 1), (1, 1). In
that way there is enough information for up-sampling after
denoising the denoised images at the lower scale.

The above method is multiscale but does not take ad-
vantage of the sub-sampling in the lower scales to increase
the algorithm speed. A normal multiscale algorithm is only
1 + 1

4 + 1
16 + · · · = 4

3 more complex than the single scale
algorithm. Instead a multiscale algorithm keeping all sub-
images when sub-sampling will be twice to five times slower,
depending on the number of scales involved, (by default two).

Yet, the redundancy of this denoising at lower scales notably
increases the restoration quality. This is particularly important,
as any denoising error on a down-sampled image is amplified
by a four-factor after upsampling.

B. The Mean Sub-Sampling Method

We shall denote by s the current dyadic scale of the
multiscale algorithm. For the particular case of white noise, the
aim of the sub-sampling is to obtain from ũs an image ũs+1

where the standard deviation of the noise has been divided by
two compared to the noise contained in ũs. To get this result,
one can use a filter f(i, j) satisfying∑

i,j

f(i, j) = 1 and
∑
i,j

f(i, j)2 =
1

4
.

The simplest filter coping with these conditions is the average
filter F, defined by

F(i, j) =

{
1
4 if (i, j) ∈ [(0, 0), (0, 1), (1, 0), (1, 1)] ,

0 otherwise.

which averages each group of four adjacent neighboring pixels.
There are four different filter+sub-sample results, as shown
in figure 3. Moreover if the image ũs is well-sampled, so is
ũs∗F. Thus, the difference image is not aliased. Since all sub-

Fig. 3. Four different ways to average red neighbors of the yellow reference
pixel.

sampled images are available, the noise estimation can work
with the same amount of samples at every scale, which favours
a good precision on the noise estimation at lower scales.
All sub-sampled images must also be denoised. To avoid
handling them separately, we introduce here a new procedure
to process them jointly in a single image, while avoiding
creating artificial borders. The four sub-sampled images are
regrouped in one mosaic image, as shown in figure 4. The
boundaries of the sub-images are in that way better denoised,
because they are included in a smooth larger image.

Fig. 4. Left: mosaic of the scale 1 sub-images. Right: mosaic of the scale 2
sub-images, The input image has scale 0.
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C. The Mean Up-Sampling Method

The aim of the up-sampling is to go back to the upper
scale, after denoising the four sub-images obtained by sub-
sampling as seen in Section IV-B. The four sub-images ũ1,
ũ2, ũ3 and ũ4 have their pixel center (resp. in red, purple,
green and blue in figure 5) located at the center of four pixels
of ũ (in black in figure 5). Thus they are shifted by ± 1

2 in
both coordinate directions. The reconstruction of the pixels of
ũ (see the example of the pixel in yellow in figure 5) will be
done by averaging their four neighbors, each one belonging
to each sub-image.

Fig. 5. Position of the center of pixels in the original image ũ in black, in
the four sub-images ũ1 in red, ũ2 in purple, ũ3 in green and ũ4 in blue. The
yellow pixel will be reconstructed by averaging the top left red pixel, the top
right purple pixel, the bottom left green pixel and the bottom right blue pixel
of its four pixel neighborhood.

D. Noise Estimation

If the input noisy image had pure Gaussian noise, then after
each sub-sampling the noise should be divided by two and
remain white. For raw images it is the case, since (almost) no
alteration nor transformations are applied to the original noisy
pixels. Then the noise is a Poisson random process, which can
be approximated by a signal-dependent Gaussian noise.

However, the proposed algorithm must deal with all kinds
of noisy images. A large majority of them are JPEG images
where JPEG has quantized DCT coefficients, making the
energy decrease as the frequency increases. In such images
the noise increases at lower scales, as illustrated in Figure 6,
which are the noise curves of the image shown in Figure 17.
This figure displays average noise curves for high and low
frequencies respectively, in the three scales noise estimation
from a JPEG image. The low-frequency noise is not altered
by JPEG and becomes a high-frequency noise after three1

subsampling operations.
In our redundant noise estimation, the noise covariance

matrices are estimated at each dyadic scale. Section IV-B
explains how the noise estimation is applied on the mosaic
image composed of all sub-images. Then for every scale the
same number of samples is available, which allows the noise
estimation to retain a decent accuracy even at coarse scales.
At each given scale, all sub-images of the mosaic are denoised
with the same set of noise covariance matrices.

The whole coarse to fine multiscale procedure is summa-
rized in Algorithm 1. During the sub-sampling the four sub-
images are kept and assembled in a mosaic to be denoised

1Since JPEG transform is based on the 8 × 8 DCT transform, after three
subsamplings the 8 × 8 pixels patches become a single pixel. Thus, at the
third scale the noise is only high-frequency and uncorrelated.
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Fig. 6. Average noise curves for a typical JPEG-encoded image (shown in
Figure 17). From left to right: low frequencies, high frequencies. From top
to bottom: scale 2, scale 1, scale 0. Instead of being divided by two at each
scale (as it should happen with white noise), the noise grows in lower scales,
where JPEG has not removed it.

together. It follows that for each scale, the mosaic keeps
the original image size. Thus the complexity for the whole
algorithm is approximately equal to N times the complexity
of the one scale algorithm. In the following we shall call
our proposed algorithm the “Noise Clinic” as it combines a
diagnosis of the image illness with an immediate cure.

V. VALIDATION

Blind denoising is designed mainly for images where the
image history is unknown and no ground truth available. But
we can test the denoising performance of the Noise Clinic
after simulating a whole image processing chain on a Poisson
noisy image for which the ground truth is available. One of
the worst possible noise distortion is provided by the image
processing chain applied in the camera hardware and generally
ending with JPEG compression. This chain includes nonlinear
corrections on the raw image, followed by some denoising,
demosaicking, gamma-correction, white balance and JPEG
compression, namely the quantization of local block DCT
coefficients. To see to which extent the method works, we
started with perturbations consistent with our noise model and
then simulated a typical camera image processing chain ending
with JPEG compression. We first obtained a noise-free raw
image uraw by subsampling a high quality outdoor image. Then
a Poisson noisy ũraw was simulated from it. Four validation
experiments were performed.

First, we computed a reference denoised version of the
image:
• the Noise Clinic was directly applied on ũraw to get ûraw;
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Fig. 7. Average noise curves for a typical JPEG-encoded image (shown in
Figure 17). From left to right: low frequencies (a,c,e), high frequencies (b,d,f).
From top to bottom: scale 2 (a,b), scale 1 (c,d), scale 0 (e,f). Instead of being
divided by two at each scale (as it should happen with white noise), the noise
grows in lower scales, where JPEG has not removed it.

ũrgb ûrgb|s2 ûrgb|s3 v̂rgb
8.62 3.63 3.65 6.46

TABLE IV
RMSE BETWEEN NOISY/DENOISED IMAGES AND CORRESPONDING

REFERENCE IMAGE (uRAW ) WHEN TWO AND THREE SCALES ARE USED.
v̂RGB DENOTES THE RESULT OF BLIND BLS-GSM FOR THIS EXPERIMENT.

• a white balance and a gamma correction were applied on
uraw, ũraw and ûraw to get urgb, ũrgb and ûrgb.

Those images will be used as reference, to see how other parts
of the image processing chain (such as the demosaicking and
the JPEG compression) impact the result of the denoising.
Table IV shows RMSEs between the noisy and denoised
images and the reference one. One can also remark that the
best result of the denoising (both in term of RMSEs and visual
aspects) is obtained when the Noise Clinic is applied directly
before any transformation.

Second, a demosaicking algorithm was added to the image
processing chain before calling the denoising part:
• extract the mosaic2 of the noise-free image: um =

Mosaic(uraw);
• do the same for the noisy image: ũm = Mosaic(ũraw);
• apply a classic demosaicking method3 on both images,

followed by a white balance and a gamma correction to
get ud and ũd;

• finally apply the Noise Clinic on ũd to get ûd.

2The mosaic image is obtain by keeping only the bayer (R Gr Gb B) over
a group of four pixels instead of all RGB values.

3The demosaicking algorithm used in this experiment was Self-similarity
Driven Demosaicking algorithm [4], available on IPOL.

Algorithm 1 Noise Clinic
Input : Noisy image ũ0
Input : Number of scales N
Output : Denoised image û0

Part 1 : Builds the image scale pyramid and records the
difference images
for each scale s = 1 to N − 1 do

Let {ũks−1}k∈[[1,4s−1]] be the set of noisy subsampled
images obtained at the previous scale. (For scale s = 1,
it is ũ0);
for k = 1 to 4s−1 do

Downsample ũks−1 into {ũ4(k−1)+i
s }i∈[[1,4]] (see IV-B);

Save difference images for this scale :

d̃ks−1 = ũks−1 − U
(
{ũ4(k−1)+i

s }i∈[[1,4]]
)k
.

end for
if s = N − 1 then

Set {ṽkN−1}k = {ũkN−1}k
Build the noisy mosaic m̃N−1 from {ṽkN−1}k∈[[1,4N−1]].

end if
end for

Part 2 : Estimates noise and denoises bottom-up
for s = N − 1 to 0 do

Estimate the noise covariance matrices on m̃s (see III);
Denoise m̃s with NL-Bayes using {DtMiD}i (see II);
if s > 0 then

for k = 1 to 4s−1 do
Up-sample {ûs,4(k−1)+i}i∈[[1,4]]
Add the saved details d̃ks−1 to get ṽks−1 (see IV-C)

end for
Construct the next scale mosaic m̃s−1 from {ṽks−1}.

else
û0 = û10

end if
end for

ũd ûd|s2 ûd|s3 v̂d
8.64 4.84 4.84 6.43

TABLE V
RMSE BETWEEN NOISY/DENOISED IMAGES AND CORRESPONDING

REFERENCE IMAGE (ud) WHEN TWO AND THREE SCALES ARE USED FOR
THE DEMOSAICKING EXPERIMENT. v̂d DENOTES THE RESULT OF BLIND

BLS-GSM FOR THIS EXPERIMENT.

Table V shows RMSEs for this experiment. One may notice
that after a demosaicking the noise is no more white, and some
structures appears in the noise. These structures are preserved
and sometimes enhanced by the denoising algorithm, since it is
seen as structure and not as noise. This explains why RMSEs
are less favourable than when the denoising is directly applied
on the raw images.

Third, a complete image processing chain was simulated to
obtain a final JPEG compressed image:
• apply a JPEG compression of quality 92 over both ud

and ũd to get ujpeg and ũjpeg;
• apply the Noise Clinic to get ûjpeg.
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ũjpeg ûjpeg|s2 ûjpeg|s3 v̂jpeg
8.70 5.34 5.53 6.30

TABLE VI
RMSE BETWEEN NOISY/DENOISED IMAGES AND CORRESPONDING

REFERENCE IMAGE (uJPEG ) FOR THE JPEG EXPERIMENT, WITH
COMPRESSION QUALITY OF 92. v̂JPEG DENOTES THE RESULT OF BLIND

BLS-GSM FOR THIS EXPERIMENT.

ũf ûf1 |s2 ûf1 |s3 ûf2 |s2 ûf2 |s3 v̂f1 v̂f2
1.58 0.75 0.82 0.75 0.75 1.24 1.28

TABLE VII
RMSE BETWEEN NOISY/DENOISED IMAGES AND CORRESPONDING

REFERENCE IMAGE (uf ) FOR THE filtered EXPERIMENT. v̂f1 AND v̂f2
DENOTE RESULTS OF BLIND BLS-GSM FOR THIS EXPERIMENT.

Table VI shows RMSEs for this experiment. Of course, as
JPEG compression creates more artifacts and structured noise,
results are worse than with the first two experiments. This only
means that the denoising should be applied as soon as possible
in the whole image processing chain. However, results are not
very far from the ideal case, which confirms the interest and
the strength of the Noise Clinic.

Fourth, the filter H2 seen in section III-A was used to get:
• a reference filtered image: uf = H2 ∗ uraw;
• a noisy filtered image: ũf = H2 ∗ ũraw;
• the result of the Noise Clinic of the noisy filtered image:
ûf1 = NC(H2 ∗ ũraw);

• the filtered result of the Noise Clinic of the noisy image:
ûf2 = H2 ∗NC(ũraw).

Table VII shows RMSEs associated to this experiment. Of
course after this filtering, there only remains low frequency
noise, which explains why RMSEs values are better than in
the ideal case. However, the Noise Clinic is still able to give
good results.

Figure 8 (resp. 9 and 10) shows results associated of the
raw experiment (resp. demosaicking and JPEG).

Figure 11 (resp. 12 and 13) shows a comparison between
the Noise Clinic and Blind BLS-GSM for the raw experiment
(resp. demosaicking and JPEG).

VI. RESULTS

A. Detailed Results

In this section we applied the blind denoising to real noisy
images for which no noise model was available. To illustrate
the algorithm structure and its action at each scale, we present
for each experiment the noisy input image and for each scale:
• the noisy image where noise has already been removed

at coarser scales;
• the denoised image at this scale;
• the difference image = noisy - denoised at this scale;
• the average noise curve over high frequencies;
• the average noise curve over low frequencies.

For each scale larger than 1, the subsampled images are up-
sampled to keep the original image size. Similarly, the noisy
image shown at each scale is the sum of the upsampled version
of the denoised sub-images of the previous scale and of the
still noisy difference image kept in reserve. In other terms this

Fig. 8. Visual results of the reference (first) experiment. From top to bottom,
and left to right: full noise-free image, crop of the noise-free image urgb, crop
of the noisy image ũrgb, crop of the result of the Noise Clinic using two scales
ûrgb|s2 and crop of the result of the Noise Clinic using three scales ûrgb|s3.

image contains the remaining noise at the current scale; the
noise at coarser scales has in principle already been removed.
Visual results are shown in Figure 14.

The corresponding noise curves are presented in Figure 15.
The experiments made on JPEG photographs from unknown
sources are obviously noisy but, as the noise curves illustrate,
the noise is not white and is signal dependent. This is easily
detected by the fact that the noise curves are not flat and that
they are not divided by two from a scale to the next, as they
should if the noise were white.

A typical fact of JPEG images is that the noise increases at
the lower scales. This confirms the necessity of a multiscale
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Fig. 9. Visual results of the demosaicking (second) experiment. From top to
bottom, and left to right: crop of the noise-free image ud, crop of the noisy
image ũd, crop of the result of the Noise Clinic using two scales ûd|s2 and
crop of the result of the Noise Clinic using three scales ûd|s3.

algorithm.

B. Influence of the Number of Scales

Theoretically any number of scales could be used. Indeed
at a very coarse scale the noise should be almost null and
estimated as such, so that no denoising eventually would occur
at very coarse scales. In practice however, some structure of
the image may be confused with noise in the noise estimation
step. Indeed the noise estimation method is tight on very large
images on which pure noise samples in large numbers can be
found [17]. After several subsamplings, the image becomes too
small, and the risk of confusing texture with noise increases.
In consequence applying a blind denoising on a small image
is increasingly at risk of removing detail when the scale
increases. Thus, it is almost always better to use a minimal
number of scales, in most cases not more than two. However,
we found that for some images with large low frequency noise
it is sometimes better to use up to five scales. From that point
of view our “blind denoising” is not fully blind and requires an
user evaluation of the number of scales involved. Nevertheless
our default value is two, and works on a large majority of the
images. Illustrations of the use of the “right” number of scales
are presented in Figure 16.

For the “Palace” image in Figure 16, five scales are needed
to obtain a noise-free result because of the huge low-frequency

Fig. 10. Visual results of the JPEG (third) experiment. From top to bottom,
and left to right: crop of the noise-free image ujpeg, crop of the noisy image
ũjpeg, crop of the result of the Noise Clinic using two scales ûjpeg|s2 and crop
of the result of the Noise Clinic using three scales ûjpeg|s3.

Fig. 11. Visual comparison of the reference (first) experiment. From left to
right: crop of the result of the Noise Clinic using three scales ûrgb|s3 and
crop of the result of the Blind BLS-GSM algorithm v̂rgb.
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Fig. 12. Visual comparison of the demosaicking (second) experiment. From
left to right: crop of the result of the Noise Clinic using three scales ûd|s3
and crop of the result of the Blind BLS-GSM algorithm v̂d.

Fig. 13. Visual comparison of the JPEG (third) experiment. From left to right:
crop of the result of the Noise Clinic using three scales ûjpeg|s3 and crop of
the result of the Blind BLS-GSM algorithm v̂jpeg.

noise. In the difference image using five scales one can see
that some image structure has been included in the noise. Yet,
this low frequency loss is harmless, being undetectable in the
resulting denoised image.

e) Result on typical low-light JPEG image : The amount
of noise is directly related to the amount of light during the
acquisition. Images as shown in Figure 17, taken in a bar with
low light conditions are typically very difficult to denoise, even
if we had directly access to the RAW image, due to the huge
amount of noise. One can observe big colored spots caused
by the demosaicking. JPEG compression ends up creating
structured noise. The big colored spots are well attenuated by
blind denoising, but the structure created by JPEG is partly
left. This is easily explained. These artifacts present sharp
recurrent structures which are necessarily confused with signal
in an algorithm based on image self-similarity.

f) Results on Old Photographs : Scanned old pho-
tographs form a vast image corpus for which the noise model
can’t be anticipated. The noise is chemical, generally with big
grain and further altered by the scanning and JPEG encoding.
Figures 18 and 19 show results obtained by the Noise Clinic
over this kind of noisy images.

Noisy image Denoised image Diff. image

Noisy (scale 2) Denoised (scale 2) Diff. (scale 2)

Noisy (scale 1) Denoised (scale 1) Diff. (scale 1)

Noisy (scale 0) Denoised (scale 0) Diff. (scale 0)

Fig. 14. Illustration of blind denoising of a JPEG image, the “Frog” image.
It is advised to zoom in the high quality .pdf to see detail.

Low freq. av. curve (s. 2) High freq. av. curve (s. 2)

Low freq. av. curve (s. 1) High freq. av. curve (s. 1)

Low freq. av. curve (s. 0) High freq. av. curve (s. 0)
Fig. 15. Noise estimation of the “Frog” image: The noise in this image is
clearly colored: it increases with descending octaves instead of being divided
by two, as it should if it were white.
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Noisy image

Denoised image (2 scales) Difference image

Denoised image (3 scales) Difference image

Denoised image (4 scales) Difference image

Denoised image (5 scales) Difference image
Fig. 16. Blind denoising when varying the number of scales on “Palace”.

Fig. 17. Blind denoising on “Bar”, using three scales. From left to right, top
to bottom : input noisy image, crop of the noisy image, crop of the output
denoised image, crop of the difference image.

Fig. 18. Blind denoising on “Marilyn”, using two scales. From left to right,
top to bottom : input noisy image, crop of the noisy image, crop of the output
denoised image, crop of the difference image.

Fig. 19. Blind denoising on “Solvay conference, 1927”, using three scales.
From left to right, top to bottom : input noisy image, crop of the noisy image,
crop of the output denoised image, crop of the difference image.
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C. Comparison to one of the very few available blind denois-
ing algorithms

We end this experimental section with a comparison of the
Noise Clinic with blind BLS-GSM introduced in [18] and [19],
a state-of-the-art blind denoising algorithm. The comparison
was performed on several images with various noise models.
BLS-GSM also is a multiscale algorithm modeling wavelet
coefficient patches at each scale and making a global sophisti-
cated Bayesian estimation of them as a Gaussian mixture. NL-
Bayes instead has a simpler, but local patch Gaussian model.
The global patch model in BLS-GSM has to be more complex
to cope with the global patch variability.

In Figure 20 noisy images present strongly structured peri-
odic noise, which is remarkably removed by the blind BLS-
GSM algorithm, whereas our blind denoising keeps it and even
re-enforces it. However one can argue that this structured noise
may be seen as a repetitive texture belonging to the image and
therefore must be treated as detail and not as noise.

Fig. 20. Results of our blind denoising and of Blind BLS-GSM on several
images from [18]. From left to right: Noisy image, result of the Noise Clinic,
result of the Blind BLS-GSM algorithm. It is advised to zoom in by a 300%
factor the digital document to examine details.

In Figure 21 the noise is more “normal” and closer to what
can be expected from a natural image, and our blind denoising
performs better. Blind BLS-GSM manages to remove some
noise, but a slightly structured noise still remains, appearing
in horizontal strips.

Figures 22, 23 and 24 show comparisons for low-light JPEG
image and old Photographs presented in section VI-B0e and
VI-B0f

VII. DISCUSSION

Blind denoising can be performed with minimal assump-
tions on the nature of the noise. We observed good results
on almost any natural image, even if it had been modified
by destructive applications such as JPEG compression or
chemical processes. Particularly in old photographs, noise can
acquire a thick grain which is only efficiently denoised at low
scales. This method does not apply to impulse or multiplicative

Fig. 21. Comparing our blind denoising with Blind BLS-GSM on several
images. It is advised to zoom in by a 400% factor the digital document to
examine details. From left to right: Noisy image, result of the Noise Clinic,
result of the Blind BLS-GSM algorithm.

Fig. 22. Blind denoising on “Bar”. From left to right: crop of the result of
the Noise Clinic by using three scales and crop of the result of the Blind
BLS-GSM algorithm.

Fig. 23. Blind denoising on Marilyn”. From left to right: crop of the result
of the Noise Clinic by using two scales and crop of the result of the Blind
BLS-GSM algorithm.
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Fig. 24. Blind denoising on “Solvay conference, 1927”. From left to right:
crop of the result of the Noise Clinic by using three scales and crop of the
result of the Blind BLS-GSM algorithm.

noise and should be extended to such alterations. Also our
local noise estimation procedure did not detect the strength of
the fully structured noise present in the third infrared image
of Fig. 20. The case of a globally frequency dependent noise
is of course better treated by Portilla’s method which assumes
a global noise model. We wrote that the proposed method was
“signal, scale and frequency” dependent. In fact as indicated
by the preceding caveat, the method estimates and processes
noise frequencies in the DCT of small blocks. So these
frequency coefficient are far less precise than global image
frequencies. Furthermore they are scale dependent, since we
applied a dyadic subsampling procedure. Since at each dyadic
scale, frequencies are estimated for blocks with at least 4× 4
size, it follows that these scale dependent frequencies overlap.
This leads to a redundant denoising since left-over noise at a
coarse scale can be estimated again, and removed again at the
overlapping finer dyadic scale. This redundancy of estimators
is particularly necessary for such a complex noise model. The
fact that JPEG images can be denoised in that way was far
from granted. Indeed, it is impossible to really model noise
in JPEG images, which are the result of a chain of nonlinear
operators. It can be argued that our noise signal, frequency and
scale dependent noise estimation is not yet general enough to
cope with such alterations. This objection is definitely valid
for block artifacts apparent in strong JPEG compression. Thus,
strongly compressed images where blocking effects dominate
remain beyond our scope.

VIII. ACKNOWLEDGEMENT:

Work partially supported by DxO-Labs, the Centre National
d’Etudes Spatiales (CNES, MISS Project), the European Re-
search Council (Advanced Grant Twelve Labours), and the
Office of Naval Research (Grant N00014-97-1-0839).

REFERENCES

[1] F. J. Anscombe. The transformation of Poisson, binomial and negative-
binomial data. Biometrika, 35(3):246–254, 1948.

[2] A. Buades, B. Coll, and J.M. Morel. A non local algorithm for image
denoising. IEEE Computer Vision and Pattern Recognition, 2:60–65,
2005. DOI: http://dx.doi.org/10.1109/CVPR.2005.38.

[3] A. Buades, B. Coll, and J.M. Morel. Non-Local Means Denoising.
Image Processing On Line, 2011, 2011. http://dx.doi.org/10.5201/ipol.
2011.bcm nlm.

[4] A. Buades, B. Coll, J.M. Morel, and C. Sbert. Self-similarity Driven
Demosaicking. Image Processing On Line, 1, 2011. http://dx.doi.org/
10.5201/ipol.2011.bcms-ssdd.

[5] R. R. Coifman and D. L. Donoho. Translation-invariant de-noising,
volume 103. Springer New York, 1995. http://dx.doi.org/10.1007/
978-1-4612-2544-7 9.

[6] M. Colom, M. Lebrun, A. Buades, and J.M. Morel. A non-parametric
approach for the estimation of intensity-frequency dependent noise.
IEEE International Conference on Image Processing, 2014. Submitted.

[7] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian. Image denoising by
sparse 3d transform-domain collaborative filtering. IEEE Transactions
on image processing, 16(82):3736–3745, 2007. DOI: http://dx.doi.org/
10.1109/TIP.2007.901238.
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