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Abstract: The high spectral redundancy of hyper/ultraspectral Earth-observation satellite
imaging raises three challenges: a) to design accurate noise estimation methods, b) to denoise
images with very high SNR, and c) to secure unbiased denoising. We solve (a) by a new
noise estimation (b) by a novel Bayesian algorithm exploiting spectral redundancy and spectral
clustering, and (c) by accurate measurements of the interchannel correlation after denoising.
We demonstrate the effectiveness of our method on two ultraspectral Earth imagers, IASI and
IASI-NG, one flying and the other in project, and sketch the major resolution gain of future
instruments entailed by such unbiased denoising.
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1. Introduction

Hyperspectral (HSI) and Ultraspectral Imaging (USI) have numerous applications, such as
the characterization of the abundance of components found in planetary exploration [1], the
measurement of the thermodynamic, chemical and climate variables of the Earth atmosphere
through satellite sounders [2] but also, in the case of HSI, medical applications such as tumor
detection [3], inspection of food and agricultural products [4], among many others. To make the
reading easier, in the text we will refer from now to “HSIs" for both HSIs and USIs, without
loss of generality. Hyperspectral imaging is generally characterized by a low resolution spatial
sampling and high resolution spectral sampling, hence requiring unmixing algorithms to augment
the spatial resolution and characterize the detected chemical or atmospheric events [5].
The data acquired by a hyperspectral instrument is affected by internal random perturbations

such as the dark currents inside the sensor, readout errors, and absorption of electromagnetic
energy by the semiconductors of the device, as well as by external sources, particularly photon
noise due to the intrinsic quantum nature of light. All of these random perturbations of the
measurement are known as noise in the acquired HSI.
With the exception of photon noise, the set of the other noise sources can be modeled as

homoscedastic additive white Gaussian noise, whereas photon noise depends on the temperature
of the scene and the frequency of the channel being observed. However, photon noise can be
well characterized by Planck’s law. Thus one can formulate a complete and realistic noise model,
which will be discussed in Sec. 2. Nevertheless, reestimating the noise components on board
remains necessary.
Our main focus here is to reconsider and reformulate the noise estimation and the image

denoising problem for high Signal-to-Noise Ratio (SNR) satellite hyperspectral images (where
the noise is mainly governed by Planck’s law), by taking advantage of the high redundancy of
the hyperspectrum. The latest advances in the design of the hyperpectral sensors allow one
to measure very small variations of the signal in narrow spectral channels with a very low
noise added by the electronics (i.e. dark, readout, shot, or electromagnetic interference noises).
Therefore, modern instruments deliver high-SNR images. Yet, precisely, this high SNR and an
even higher one are needed to evaluate (for example) the tiny variations of some diluted chemical
components in the atmosphere.

We shall see that the observation of several thousands spectral channels on many data makes it



possible to estimate the noise model from the data themselves. We shall also be in a position to
check that the estimated noise matches the physical model.
The new method we present here is based on some of the ideas sketched in our conference

paper [6]. We show Peak Signal-to-Noise Ratio (PSNR) and correlation results, before and after
denoising. Actually we introduce a similar but more robust metric, the Median Signal to Noise
Ratio (MSNR), Eq. (9). Our main goal is to reach a bias-free denoising method, which is defined
as a method introducing no correlation in the signal. This is particularly important for applications
to the detection of small variations in temperatures and densities of chemical components, where
denoising can be followed by sophisticated detection and unmixing methods [7, 8].
The classic denoising tools that have been tried on HSIs in the literature comprise: wavelet

thresholding, total variation, 3D patch-based methods, coupled with decorrelation tools. We now
review the most effective ones.
The authors of [9] and [10] applied denoising to HSIs (70 to 200 channels), assuming low

or very low SNR. In this low SNR context their algorithm could still be compared to classic
patch-based algorithms such as Video Block Matching 3D (VBM3D) [11]. As we shall see for
high SNR, HSIs with thousands of channels, patch-based methods are no longer competitive.
They underperform when compared to algorithms exploiting the strong spectral redundancy.

The method proposed in [12] simulates uniform Gaussian noise and some “sparse noise”
which is not related to Planck’s law, and therefore not adapted to hyperspectral imaging. This
method involving 2-D total variation along the spatial dimension and 1-D total variation along
the spectral dimension may be used for multi-spectral images and low SNR. Again, this method
is not relevant for high SNR hyperspectral images, because the spatial total variation forces local
spatial correlations. Similarly the denoising method in [13] and [14] involves a minimization of
the 2-D total variation along the spatial dimension and of the 1-D total variation along the spectral
dimension. This is again adapted to HSIs with low SNR. The authors only consider a combination
of Gaussian and impulse noise which does not correspond to the physics of hyperspectral images.
A more up to date approach is presented in [15]. This paper builds spatial-spectral dictionaries
of patches to exploit the sparsity across the spatial-spectral domain, the high correlation across
spectra, and the non-local self-similarity over space. The denoising energy model which depends
on three parameters is minimized by an iterative method. This model is clearly related to what
we will propose, but again used in a different framework: hyperspectral rather than USIs, with
low SNR. The proposed iterative method would be far too slow for our purposes. The dictionary
approach can be accelerated as proposed in [16]. This paper describes an attempt at a fast greedy
method based on orthogonal matching pursuit. This again is done in the context of multispectral
images with low SNR, and is not adapted to the high SNR setup of ultraspectral imaging. A
recent method based also on dictionary learning and decomposable nonlocal tensors (TDL) [17]
is nowadays one of the methods that reach the best performance for low and moderate SNR HSIs.
It exploits two well-known intrinsic characteristics of HSIs: the spatial nonlocal autosimilarity
and the global correlation across the spectrum. We will also compare our results with TDL [17]
and VBM3D [11] and show that even the best methods of the state of the art that are most
performant in the literature are not adapted to the very high SNR images that are obtained by
the next generation of ultraspectral sensors, including that of the future Infrared Atmospheric
Sounding Interferometer Next Generation (IASI-NG) satellite.

We shall refer to a method based on 2-D non-subsampled shearlet transform (NSST) [18] and
fully constrained least-squares unmmixing (FCLSU) [19]. This method splits the channels of
the HSI between low and high noisy sets according to their spectral correlation, and then NSST
is applied at each channel. Finally, the low-noise bands are denoised by thresholding shearlet
coefficients and high-noise channels with FCLSU.

The method proposed by Chen [20] seems to be another state of the art method and it contains
several arguments that we shall reuse here. Similarly to the present work, the authors consider



hyperspectral images with signal-to-noise ratio (such as 600 : 1). They decorrelate the image
information of hyperspectral data cubes from the noise by using principal component analysis
(PCA). They argue that the first PCA channels contain a majority of the total energy of the HSI
and that removing noise in the low-energy PCA channels will not harm the fine features of the
data cubes. A 2-D bivariate wavelet thresholding method is therefore used to remove the noise for
low-energy PCA channels, while instead a 1-D dual-tree complex wavelet transform denoising
method is used to remove the noise of the spectrum of each pixel of the data cube.

The results of our denoising method, Dual Bispectral Bayesian Denoising (DBBD) outperform
state-of-the art methods such as [19] and [20]. The DBBD results are presented in Sec. 4.
Our plan is as follows. In section 2 we describe the noise model. It is valid for IASI and the

future satellite IASI-NG. In section 2.2 we describe the simulation data used for IASI-NG. Section
3 details our proposed method for hyperspectral images with high SNR and large spectrum.
Section 4 details the evaluation of the method on simulated and real hyperspectral satellite images
with high SNR and large spectrum. Section 5 is a conclusion on the perspectives open to satellite
design by high performance unbiased denoising.

2. The Noise Model and its Estimation

Assuming a black body, the emission of photons is related only to its temperature T [21] and it
can be modeled by a Poisson distribution whose variance σ2 is equal to its mean µ. By definition
of the Signal to Noise Ratio, we have SNR = µ

σ =
λ√
λ
=
√
σ2 = σ. Since the Noise Equivalent

Differential Temperature (NEDT) is defined as the change in temperature that yields an SNR ratio
of unity, we can write that the standard deviation of the noise is equal to the Noise Equivalent
Delta Radiance (NEDL), which is expressed as [22–24]:

NEDL(ν,T) = NEDT(ν,T) ×
����∂L(ν,T)

∂T

���� ,
where L(ν,T) is the black body radiance and ν the corresponding wavenumber. The values of
NEDT are an intrinsic characteristic of the acquisition sensor and they can be tabulated according
to frequency and temperature values. In practice one assumes that the temperature of the black
body is constant and it is fixed to a certain reference, typically T = 280 K (background-limited
system).
According to Planck’s law,

L(ν,T) =
c1ν

3

ec2ν/T − 1
,

where c1 and c2 are the first and the second radiation constants. Thus,

∂L(ν,T)
∂T

=
c1c2ν

4

T2
ec2ν/T(

ec2ν/T − 1
)2 .

Finally, the standard deviation of the noise can be obtained by the following closed expression [25]:

σnoise(ν,T) = NEDT(ν,T) ×
c1c2ν

4

T2
ec2ν/T(

ec2ν/T − 1
)2 . (1)

The physical details behind these well-known formulations are out of the scope of this article,
and we refer the reader to [25], as well as to [26, 27] for more information.
Assuming a (non-available) ideal noise-free HSI or USI G, the noisy HSI G̃ is obtained as

G̃ν = Gν +Nν, (2)

where Nν is a Poisson random variable whose parameter is the NEDL.



2.1. Noise Estimation

Sec. 2 discussed how to obtain the standard deviation of the noise in a particular image in the
hyperspectral cube corresponding to a wavenumber ν. While this physical model is valid for a
black body, there are situations where it might be useful to estimate the noise from the data instead
of assuming directly the ideal black body scenario. First, the radiometric characterization is not
quite realistic. An Earth-observing scene in space-flight might not correspond to the one obtained
in pre-flight calibration, where the instrument is calibrated using a sphere under constant lighting
simulating a black body. The scene observed during space calibration is likely to have spectral
radiance characteristics which do not correspond exactly to the black body assumption [28].
Second, the signal in the sensor might be censored or even get saturated if it overflows its

dynamic range, causing a nonlinearity of the dependence of the variance of the noise with respect
to the intensity when the signal approaches saturation points. This leads to censoring and clipping
effects [29].

Third, the instrument mounted on the satellite might be made of several sensors with spectral
overlapping. For example, in the case of the IASI-NG, the instrument is made of four hyperspectral
sensors (four bands) with spectral overlapping of ±40cm−1. Thus, the variance of the noise at the
intersections is halved by averaging.

For these reasons, instead of assuming the black body model directly, it may be recommended
to estimate the noise model from the noisy hyperspectral image itself. We propose in Algo. 1 a
simple procedure to estimate the noise from HSIs. Its adequacy will be verified on both simulated
and real data.

Algorithm 1 Estimate the noise level function of an HSI
1: HSI noise estimation

Input G̃: acquired noisy HSI
Input w = 100: window size
Output σ̂: noise estimation

2: R← corrcoef(G̃) . Pearson cross-correlation coeffs.
3: σ̂ ← zeros(R. shape[0]) . First dimension: frequencies
4: # Raw noise estimation
5: for i ∈ range(R.shape[0]) do
6: R[i, i] ← −∞ . Exclude trivial diagonal maxs
7: j ← argmax R[i, :] . Get most correlated frequency
8: k ← mean(G̃i)/mean(G̃j )

9: G̃j ← G̃j × k .Mean equalization
10: σ̂[i] ← ||G̃i − G̃j | |/

√
2 . Raw noise estimation

11: end for
12: # Final filtered estimation
13: for i ∈ range(0, len(σ̂),w) do . Non-overlapping window
14: j ← i + w − 1
15: if j ≥ len(σ̂) then . Take care of array boundary
16: j ← len(σ̂) − 1
17: end if
18: σ̂[i : j + 1] ← min(σ̂[i : j + 1]) . Assign min to window
19: end for
20: return σ̂

The algorithm has two steps. First (lines 4–12) it finds for every channel i the channel j , i that
gives the maximum correlation, equalizes the data in both channels to have the same mean, and
computes a raw estimation of the noise variance from their difference. This empirical variance
(computed on line 11) is likely to contain outliers, since the most correlated channel with respect



to a given one can have a larger difference than the one caused by the small noise level.
The second step (lines 13–19) removes the outliers. The assumption is that the noise levels

inside a short frequential window should not be very different, since they are linked to similar
frequencies. Thus, the minimum value of the noise empirical standard deviation should be close
to the real noise value. The obvious drawback of using the min operator is that if most of the
values are close to the real noise level, then the obtained result might get a small underestimation
bias, as can be observed in the wavenumbers from 150000 to 200000 in Fig. 1. This figure shows
the noise estimation in a simulated IASI-NG with simulated added noise with the physical model,
Eq. (1). This means that after the NEDT of the sensor had been measured in the laboratory and
tabulated, we applied Planck’s law to obtain the NEDL and therefore the frequency-dependent
standard deviation (STD) of the noise. In red, one can see the standard deviation of the noise
according to the wavenumber given by the physical model. In green, our estimation. Both curves
match, and their accuracy is more than sufficient for denoising purposes.
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Fig. 1. Noise estimation with simulated data and simulated added noise according the
physical model of the IASI-NG USI #3. In red, the standard deviation of the noise according
to the wavenumber given by the physical model. In green, our estimation. Both curves match,
and their accuracy is more than sufficient for denoising purposes. The noise estimation was
obtained step-wise for each wavenumber.

Fig. 2 shows a noise estimation of two real IASI USIs. In that case the noise was not simulated
and added: It is the real noise present in the acquired USI. Here again the estimations match well
the noise predicted by the physical model.
This procedure is different and actually simpler than the noise estimator proposed in [30],

which is, as the authors claim, valid for extremely noisy hyperspectral applications. Here we are
instead working on high SNR hyperspectral data.

In order to confirm that the noise estimation procedure was accurate, we performed two kinds
of tests: one with simulated data (see Sec. 2.2 for the details on the data model) and added noise
according to the physical model presented in Sec. 2, as well estimating the noise in real HSIs and
comparing the obtained result with the physical noise model.

The noise estimation algorithm is based on the strong redundancy of HSIs, in particular on the
large cross-correlations along the different spectral channels. Fig. 3 shows an example of the
band B2 of an USI of IASI-NG. Note that we use the correlation and not the L2 or similar norms
to compare the data along different frequencies since the gain (say, the atmospheric absorption)
at different channels can be different. However, the Pearson cross-correlation of the data is robust
to these global changes.
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Fig. 2. Noise estimation in the real IASI USIs #7 and #9. The noise was estimated from the
original USI data. Similar results were obtained with the other real IASI USIs. In red, the
standard deviation according to the wavenumber given by the physical model, Eq. (1). In
green, our estimation. The noise estimation was obtained step-wise for each wavenumber.

Fig. 3. The normalized Pearson cross-correlation matrix for band B2 (from 115000.0 m−1

to 195987.5 m−1) in USI #1. The red color represents a high correlation, while white means
low (coolwarm color map). Most of the channels are correlated with other many. Only a few
frequencies are uncorrelated because of the presence of gases in the atmosphere at those
particular frequencies.

2.2. Our Real and Simulated Data

We performed experiments on both simulated and real data. The simulated data model was
obtained by the α-IASI-β radiative transfer model, originally developed for IASI by the European
Space Agency EUMETSAT (European Organisation for the Exploitation of Meteorological
Satellites). Yet this model is realistic for any nadir viewing satellite, aerial sensor, or ground
observation [31].
Fig. 4 shows the simulated scene radiance at two different frequencies of the first band of

USI #0 in our dataset. Fig. 5 corresponds however to real data obtained from an actual IASI
instrument.

3. The proposed denoising method

This section describes our proposed Dual Bispectral Bayesian Denoising (DBBD) method. Its
pseudo-code is given in Algo. 2. Most of the frequencies of an HSI are highly correlated with
the rest (see Fig. 3) with the exception of a few of them, and therefore also the acquired images
(Fig. 4). A fundamental denoising principle is to exploit redundancy of the data, and particularly



(a) 88362.5 m−1 (b) 96500.0 m−1

Fig. 4. Simulation of the images acquired by the IASI-NG instrument at different frequen-
cies (USI #0, band B1). The intensity of each pixel represents the energy measured in
W/m2/sr/m−1 units.

USI #7, 124250.0 m−1 USI #7, 241925.0 m−1

USI #8, 252925.0 m−1 USI #8, 275850.0 m−1

USI #9, 169850.0 m−1 USI #9, 174800.0 m−1

USI #10, 111600.0 m−1 USI #10, 119800.0 m−1

USI #11, 261650.0 m−1 USI #11, 275525.0 m−1

Fig. 5. Two different frequencies of the USIs #7–#11 in our database. This corresponds to
real IASI acquisitions, each of them of 120 × 23 pixels.

its self-similarity. The general principle invented by Lee [32] is to group pixels having a similar
model. Groups of similar pixels are detected by comparing their position in the image domain
and their values. In a recent image denoising method, the same principle was expanded by
grouping pixels which have similar neighborhoods [33], before denoising them together. The
reason for comparing patches instead of pixels is to ensure that the grouped pixels really obey the
same model. In the case of hyperspectral images, the high number of values available at each
pixel makes it unnecessary and actually counter-productive to use patches. Each pixel is indeed
extremely well characterized by its spectral signature. We even found that the self similarity
principle should be applied first in the frequency domain. This means that we treat frequencies
as dual pixels and group them according to their similarities, before going back to the image



domain and grouping the pixels in clusters by their similarity. Thus, we build frequency clusters
for each HSI by grouping highly correlated frequencies. We perform this using the K-means
clustering algorithm.
Each frequency cluster Λi therefore contains highly-correlated frequencies. The data at each

of the frequencies is divided by the STD of the noise to equalize all frequency STDs to 1. The
next step is to reduce the frequency domain dimensionality to N = 20 dimensions by PCA. We
verified empirically that 20 PCs are enough to represent reliably the IASI-NG USIs (see Fig.
6). This is done in conformity with the literature which recommends a PCA reduction for an
efficient representation of observations from high-resolution infrared sounders [34]. As pointed
out in [35], one of the main advantages of the spectral domain over the spatial domain is the
computation of low-noise basis vectors even from very noisy USIs. As these authors remark,

Spectral distributions can be very compactly represented and there is an overwhelm-
ingly large number of spectra in a typical USI. As we also expect noise to occur
randomly, the impact of noise on the greatest directions of variance in the large set
of spectra in an USI should be minimal. Thus PCA can be used to obtain low-noise
top basis vectors even when noise is high.

We denote by Ã the pixels in Λi after dimensionality reduction.
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Fig. 6. Decay of the normalized explained variance according to the sorted eigenvalues, in
log scale. There is no significant improvement if more than 20 PCs are used. This plot was
obtained with data from USI #0. Similar results are obtained with the others.

For each cluster Λi we apply optimal Bayesian denoising [36] to each of the pixels of the HSI
after PCA dimensionality reduction (only the first N principal components -PCs- are kept), where
P̃ is the noisy pixel and P the denoised pixel:

P = P̃ +
[
CP̃ − Cn

]
C−1

P̃

(
P̃ − P̃

)
. (3)

In this equation, CP̃ is the empirical covariance matrix of the pixels most similar to the reference
pixel in the cluster. We use the Pearson cross-correlation coefficient as the similarity criterion.
The empirical covariance matrix Cn of the noise after PCA transformation is required too. It
needs to be computed only for the wavenumbers in Λi . Sec. 3.1 gives the details on how to
compute Cn. For each cluster Λi , we apply the optimal Bayesian estimator. This estimator is
optimal under two assumptions:

a) The frequency-dependent noise model is Gaussian and entirely characterized by its co-
variance matrix Cn;



b) The pixel model is equally frequency-dependent Gaussian and characterized by its covariance
matrix CP̃ .

Assumption a) is realistic for spectrometers [22, 23]. Indeed, it is a classic result in imaging
that the Poisson distribution can be well approximated by a Gaussian when the number of photons
is large enough. Assumption b) is all the more true if our double grouping procedure, clustering
first similar frequencies and second similar pixels is efficient. Very similar such pixels are only
different by small variations caused by sampling and random local variations of all chemical
components that can be accounted for by a Gaussian model.

At this point, the pixel has been partially denoised for the wavenumbers contained in the cluster,
and only for the first N PCs. The next step is to denoise the rest of the PCs, which contains a very
noisy signal but still some useful information. Thus, the rest of the spectrum encoded at those
last PCs can be denoised, leading to a full-spectrum technique.
Here we apply the dual method of Chen [20] to the data in the cluster, which accounts for

applying a dual-tree complex wavelet transform (DT-CWT) to the rest of the PCs and denoising
them with Donoho’s universal threshold, defined as

t = σ
√

2 log(NxNy), (4)

where σ = 1 is the STD of the noise (it is one because we first divided the noisy signal by the
STD of the noise), and (Nx, Ny) is the size of the 2D image.
If we call ci, j,l the wavelet coefficient at pixel [i, j] and level l, the denoised coefficient is

obtained by soft thresholding as

ĉi, j,l = ci, j,l
(
1 − t2/|di, j,l |2

)+
, (5)

where |di, j,l |2 = (|ci−1, j,l |
2 + |ci, j,l |2 + |ci+1, j,l |

2)/3 is the average of the absolute squared
coefficients in a small neighborhood.

Each cluster contains only a part of the total set of wavenumbers. Thus each pixel is denoised
partly at each iteration. After all iterations, the pixel is completely denoised. Finally, the denoised
pixels are projected back (the data is expressed in the same axes as before the PCA rotation) and
the complete denoised USI is obtained. At the end, all the PCs (the first N with optimal Bayesian
denoising and the rest with DT-CWT thresholding) and all the wavenumbers have been denoised.

3.1. Estimation of Cn

Eq. (3) requires the empirical covariance matrix of the noise Cn on the PCA axes. This matrix is
not available directly and must be estimated from the noisy data itself.
The rationale behind the estimation procedure presented here is that, after PCA, the first N

PCs (in decreasing absolute eigenvalue) are dominated by the underlying signal, whereas the
N-th and following PCs are mainly the contribution of the noise. We shall call M the number of
wavenumbers in the current noisy cluster and Cn the empirical covariance matrix of the noise
being estimated. For the PCs from N to M the signal is dominated by the noise and therefore
the variance computed at these PCs corresponds mainly to the variance of the noise after PCA
rotation [37].
For the first N PCs the underlying signal dominates and it is not possible to directly measure

the variance of the noise. In order to estimate the noise, we make the following assumptions:

1. The PCA concentrated most of the variance of the noisy cluster Λi in the first PCs

2. Given that Λi was normalized in order that the noise had STD=1 along any wavenumber
therefore (as a consequence of the previous point) Cn[0, 0] ≈ 1.



The variance of the noise from the N-th PC is well estimated and therefore one can approximate
the variance of the noise from the first PC to the N-th. We chose to use a simplest estimator (a
linear function) given that we do not assume any priors, but it could be improved if additional
information is available. For example, from the statistics of many observations of real IASI-NG
images, but for the moment these data is not available. However, the simple linear estimator had
a good performance, as shown in Sec. 4.
Finally, we obtain the estimated empirical covariance matrix of the noise as:

Cn[i, j] =


1 + i×var(Λi [N,:])−1

N if i = j and i < N,
var(Λi[i, :]) if i = j and i ≥ N,
0 otherwise.

(6)

DBBD performs a denoising which is adapted to the data itself and groups similar pixels in
clusters. This covariance matrix is obtained for each of the clusters, given that the PCA rotation
is performed at each of them.

Fig. 7 shows our estimated noise variance after PCA rotation, in one of the clusters. Both the
estimation and the ground-truth curves match sufficiently to estimate an empirical covariance
matrix of the noise, Cn.

0 250 500 750 1000 1250 1500 1750
Principal component index

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Va
ri

an
ce

Variance of the noise after PCA
Estimation
True noise

Fig. 7. Estimated noise variance after PCA rotation for USI #6, band #4, cluster #2 (similar
results are obtained with the other HSIs, bands, and clusters). In red: our estimation. In
green: the true value. The curves match sufficiently to estimate an empirical covariance
matrix of the noise, Cn.

3.2. The conservative Lee correction

Eq. (3) performs totally blind denoising of each pixel of the input USI, for the first N PCs. It
assumes that the K most similar hyperspectral pixels used to compute the covariance matrix CP̃

are samples of a Gaussian vector, their differences being due to noise and to a combination of
feeble independent factors. The other PCs (assumed to contain mainly noise but also minimal
detail information) are denoised by soft thresholding.
If the denoising process is perfect, the variance of the removed signal should match the

variance of the noise. If its variance is larger than the variance given by the physical model, this
means that the denoising is not only removing noise, but also removing details. Thus, in order to
improve the denoised signal we compute a weighted sum of the denoised and of the noisy USI to



put back details from the noisy image when the denoising has been detected as too aggressive.
This technique is inspired by Lee’s local filtering [32, 38], which estimates the true value of a
pixel with a weighted sum of the noisy pixel and the average of other noisy pixels in a small
neighborhood.
The weighted sum for a given wavenumber j is given by:

Ĝ′j = αĜj + (1 − α)G̃j . (7)

The weighting factor is obtained by solving a simple equation which sets the variance of the
removed signal to the variance given by the model. The unique solution is

α2
j =

σ2
N, j

var(G̃j)
+ var(Ĝj) − 2 cov(G̃j, Ĝj). (8)

Our final denoising algorithm, DBBD, is summarized in Algo. 2.

3.3. Discussion on the choice of the hyperparameters

DBBD has three hyperparameters: the number of spectral clusters Q, the number of similar
pixels K , and N the number of PCA principal components kept.
These hyperparameters are fixed and depend on the application. For IASI-NG we found

that the optimal values are Q = 3, K = 400, and N = 20. The actual values depend on the
characteristics of the hyperspectral image, including the SNR, the size of the image, and the
number of channels per pixel. The number of PCA components which is kept (N) can be obtained
from many observations of different HSIs and choosing the value for which adding more PCs has
no significant influence on the explained variance. We chose N = 20 from the experiment shown
in Fig. 6. The number of spectral clusters depends on the number of channels. A low Q will
create clusters whose pixels are not similar enough, and conversely a large Q will produce clusters
with not enough samples. The exact value for Q depends again on the application and the number
of channels of the HSI. We fixed Q = 3 which produces 1410 channels/cluster. The number of
similar pixels N that will be used to compute the covariance matrix of the noisy pixels depends
directly on the number of pixels of the sensor and the characteristics of the image. It should be
large enough to allow computing the inverse of CP̃ . If K is too large CP̃ will be computed with
pixels which have a different spectral signature and the algorithm will fail to obtain a reliable
model of the noisy. For IASI-NG we found that K = 400 is a good compromise. Table 1 shows
the MSNRs obtained when varying the hyperparameters of the algorithm for HSI #2. Optimal is
the default case of IASI-NG with Q, N,K = {3, 20, 400}, case #1 with Q, N,K = {8, 20, 400},
case #2 with Q, N,K = {3, 7, 400}, and case #3 with Q, N,K = {3, 20, 150}. Deviations from the
optimal hyperparameters cause a slight decrease of the performance. For other type of sensors
the values for Q, K , and N need to be re-calibrated from the observations.

Optimal Case #1 Case #2 Case #3

63.44 62.39 62.08 62.84

Table 1. MSNRs obtained when varying the hyperparameters of the algorithm for HSI #2.
Optimal is the default case of IASI-NG with Q, N,K = {3, 20, 400}, case #1 with Q, N,K =
{8, 20, 400}, case #2 with Q, N,K = {3, 7, 400}, and case #3 with Q, N,K = {3, 20, 150}.
Deviations from the optimal hyperparameters cause a slight decrease of the performance.

4. Experimental validation of DBBD

Our denoising method was tested and validated on both simulated and real USIs.



Algorithm 2 DBBD denoising of an HSI
1: # Input/output:

Input G̃: acquired noisy HSI, of size (Nx, Ny, Nz )

Input σn: standard deviations of the noise (wavenumber dep.)
Input Q = 3: number of spectral clusters
Input K = 400: number of similar pixels
Input N = 20: number of PCA PCs kept
Output Ĝ′: denoised HSI

2: Ĝ← zeros(G̃.shape) . Placeholder
3: Clusterize in Q spectral groups Λi, i ∈ [1,Q] . K-means for cosine distance
4: for each cluster Λi, i ∈ [1,Q] do
5: Noise normalization: divide each coordinate of each sample in Λi by its STD taken from σn
6: Z← PCA(Λi) .Matrix of eigenvectors of the PCA of Λi , in decreasing abs. eigenvalue order
7: sigmas_pca← STD(Λi[:]) . STD of each wavenumber after PCA: Eq. (6).
8: # Process the first PC’s (from 0 to N − 1):
9: Ã← Ã[0 : N] . First N PCs
10: Cn[i, j] ← sigmas_pca[i]2 if i = j (0 otherwise) . Get noise covariance matrix
11: for each noisy pixel P̃ do
12: V← set of the K most correlated pixels with P̃
13: P̃← mean(V) . Compute their empirical mean and
14: CP̃ ← cov(V) . covariance matrix
15: P← P̃ +

[
CP̃ − Cn

]
C−1
P̃

(
P̃ − P̃

)
. Eq. (3)

16: Â← P . Append denoised P
17: end for
18: Z[0 : N] ⇐ Ã . Store Bayesian denoised
19: # Process the remaining PC’s (from N to end):
20: D← DTCWT(Ã[N :]) . DT-CWT of the remaining PCs
21: M2 ← (|D2

i−1, j,l | + |D
2
i, j,l
| + |D2

i+1, j,l |)/3
22: T[:] ← sigmas_pca[:]

√
2 log NxNy . Universal threshold

23: Z[N :] ← Z[N :](1 − T[:]2/M2[:]) . Pointwise soft thresholding
24: Ĝ(Λi) ← PCA−1(Z) . Invert PCA rotation
25: Ĝ(Λi) ← Ĝ(Λi) × σn[idx(Λi)] . Invert STD normalization
26: end for
27: # Apply conservative variance correction:
28: for j ∈ [0, shape(Ĝ)[0] − 1 do . Loop over wavenumbers
29: α2 ←

σ2
n[j]

var(G̃[j,:])
+ var(Ĝ[ j, :]) − 2 cov(G̃[ j, :], Ĝ[ j, :]) . Eq. (8)

30: Ĝ′[ j, :] ← αĜ[ j, :] + (1 − α)G̃[ j, :] .Weighted sum, Eq. (7)
31: end for
32: return Ĝ′ . Final denoised HSI

4.1. Evaluation with Simulated USIs

The reason to evaluate the method in simulations is that they allow to create an ideal USI where
the physically correct noise model is respected. Thus, a reliable ground-truth (GT) is available.
This yields a quantitative exact measurement of the performance of the method. To this aim
we used simulated data of the IASI-NG satellite project [2, 39, 40]. The location of the seven
simulated IASI-NG USIs is given in Fig. 8
The first performance test measures the PSNR of the denoised signal with respect to the

noise-free USI. In order to avoid the effect of outlier radiance values, the median of the signal
should be preferred to its maximum for the PSNR definition. This leads to using the MSNR
between an USI T and the reference noise-free USI G at wavenumber j defined by
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Fig. 8. Location of the seven IASI-NG USIs.

MSNRj(T,G) = 10 log10

[
median(Tj)

2

MSE(Tj,Gj)

]
, (9)

where MSE is the Mean Squared Error.
Fig. 9 plots the respective MSNRs of the noisy USI, the DBBD result, dimensionality reduction

by PCA band by band, and Chen’s method [20]. We display results for USIs #2, #3, #4, and #5.
Similar results were obtained for all simulated USIs. We used the following parameters in the
comparison: N = 20 in PCAbands, N = 20 PCs and 4 DT-CWT levels in Chen. For VBM3D, the
parameters are T_2D=5, T_3D=7, N=8, Nf=4, Ns=7, Npr=5, Nb=2, k=8, kt=1, p=6, d=0.000754,
lambda3D=2.700000, and tau=0.046136 (first step of the algorithm) and T_2D=4, T_3D=7,
N=8, Nf=4, Ns=7, Npr=5, Nb=2, k=7, kt=1, p=4, d=0.000138, lambda3D=0, tau=0.023068
(second step). We refer the reader to [11, 41] for more details on the parameters. For TDL, the
original source code sets the optimal values according to the level of noise. The IASI-NG USIs
have 16920 channels and 2240 pixels/channel. VBM3D [11] improves slightly the noisy HSI,
Chen’s method [20] performs significantly well and beats the PCA band-by-band. DBBD (ours)
outperforms all methods. TDL [17] has the worst performance, with a performance below the
noisy HSI, confirming that TDL is not adapted to very-high SNR frequency-dependent HSIs.

Given that neither TDL nor VBM3D can deal with frequency-dependent noise, we multiplied
each channel by the proper factor in order to equalize the STD of the noise along all the spectrum,
as required by these methods. Since exact noise level is known for each wavenumber (estimated
noise (Sec. 2.1), simulated (Sec. 4.1), or tabulated empirically from the NEDT of the sensor (Eq.
(1)), it is straighforward to perform this STD equalization.

The observed MSNR increase of the PCA result with respect to the noisy USI shows that PCA
separates efficiently noise from the signal. Since the USIs were simulated, we dispose of an exact
GT. It is therefore possible to examine the portion of signal that the denoising procedure actually
removed. We express this in terms of removed signal and not removed noise because unless
the denoising algorithm is perfect, it will remove some details along with the noise, as well as
introducing some bias in the result.

Since we know in advance that the noise is not correlated across different spectral channels, we
can measure the Pearson auto-correlation of the removed signal (Ĝ−G), and compute histograms
of correlation values (with the exception of the diagonal of the correlation matrix). Once the
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Fig. 9. MSNR denoising performances of simulated USIs #2, #3, #4, and #5. In red: the
MSNR corresponding to the noisy USI. In green: the MSNR of our DBBD method. In blue:
the denoising result obtained by simply applying PCA dimensionality reduction with N = 20
principal components band by band. Chen’s method [20] in magenta, [11] in cyan, and TDL
in olive color. Since the curves oscillate much, they have been filtered with a Gaussian of
standard deviation σ = 50 for visualization and comparison purposes only. VBM3D [11]
improves slightly the noisy HSI, Chen’s method [20] performs significantly well and beats
the PCA band-by-band. DBBD (ours) outperforms all methods. TDL [17] has the worst
performance, with a performance below the noisy HSI, confirming that TDL is not adapted
to very-high SNR frequency-dependent HSIs.

trivial ones at the diagonal have been excluded, two parameters of the histogram distribution
need to be analyzed: its mean and its sharpness. Ideally, the distribution of correlation values
should be a very sharp peak centered at zero (implying that there is no cross-correlation with
other frequencies). Fig. 10 shows the histograms of the three USIs analyzed. As can be observed
on the left, the cross-correlations of the signal removed by DBBD are centered at zero and their
distribution is sharp and symmetric, which means that the method is not introducing artificial
correlation in the denoised signal.
Table 2 compares the mean MSNR for the seven simulated IASI-NG USIs with respect to

VBM3D [11], DBBD, Chen’s method [20], PCA band by band, and TDL [17] and it shows that
DBBD outperforms all other methods. Table 3 shows the evaluation with the SSIM [42] metric,
where again DBBD outperforms the compared methods.

Table 4 gives our denoising factors. It is the factor by which the standard deviation of the noise
has been divided for each of the simulated USIs. Reducing the standard deviation of the noise by
the factor in (a) is theoretically equivalent to reducing the area of the sensor by the square of this
factor while keeping the same SNR, or increasing the resolution of the sensor while keeping the
same area. Column (c) gives the equivalent reduction in the area of the sensor.
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Fig. 10. Histograms of the Pearson auto-correlation along different frequencies of the
removed signal in USIs #2 and #3 (IASI-NG), band #3. As can be observed, the auto-
correlations of the signal removed by DBBD are centered at zero and their distribution is
sharp and symmetric. This gives strong evidence that the part of the signal that was removed
by DBBD is indistinguishable from noise.

USI # Noisy VBM3D [11] DBBD Chen [20] PCA bands TDL [17]

#0 41.76 44.96 59.39 58.13 57.91 40.46

#1 33.64 41.00 52.27 50.38 50.25 33.31

#2 45.89 51.55 63.44 62.04 60.65 44.91

#3 44.83 49.88 63.22 61.84 60.82 41.92

#4 44.51 50.25 62.46 61.09 60.12 39.91

#5 47.63 53.69 65.08 63.69 62.35 47.47

#6 40.06 49.39 58.50 56.91 56.65 39.88

Mean 42.62 48.39 60.62 59.15 58.30 41.12

Table 2. Mean MSNR for the seven simulated IASI-NG USIs for VMB3D, DBBD, Chen’s
method, PCA band by band, and TDL. The column labeled as Noisy corresponds to the
MSNR when no denoising is applied. The fact that TDL shows a MSNR lower than the
noise itself must be understood as this method not being adapted to these kind of high-SNR
frequency-dependent noise HSIs, despite of being one of the best methods available.

Fig. 11 shows the noise reduction before and after DBBD denoising in terms of the NEDT
parameter. It can be observed that the amount of noise decreases significantly after denoising.
We show results for only one of the seven IASI-NG USIs, but similar results are obtained with
the others.
Our proposed method DBBD is specially adapted to hyperspectral images where the SNR is

high and the number of channels is very large (several thousands), as in the case of the sensor
of future satellites such as IASI-NG. To complete our study we have included a hypothetical
scenario with a worse SNR and a reduced number of channels. We multiplied by 10 the STD of
the noise and took one out of 70 wavenumbers (a total of 242). The aim of this is to have a quick
review of these state-of-the-art methods in a scenario which is not adapted to DBBD. As can be
observed in Table 5, in this scenario the difference between Chen and DBBD is not significant.
The method by Chen should be preferred in this scenario, since it performed better in a majority
of USIs. TDL shows competitive results, as expected. Indeed, when the noise is larger, it is easier
to separate the noise from the signal, and if the number of channels is reduced TDL and other



USI # Noisy VBM3D [11] DBBD Chen [20] PCA bands TDL [17]

#0 22.73 23.47 26.27 26.12 25.75 22.48

#1 22.73 24.08 26.19 26.16 26.02 22.73

#2 22.73 23.85 25.98 25.81 24.92 22.27

#3 22.73 23.54 26.06 25.91 25.18 20.97

#4 22.73 23.75 25.95 25.83 24.93 20.94

#5 22.73 23.95 26.04 25.83 24.87 22.65

#6 22.73 24.14 26.12 26.11 25.89 22.72

Mean 22.73 23.80 26.08 25.96 25.26 21.80

Table 3. | log(1 − SSIM)| for the seven simulated IASI-NG USIs for VBM3D, DBBD, Chen,
PCA band by band, and TDL. Noisy refers to the case when no denoising is applied. The
evaluation of TDL shows again that certain methods (including VBM3D) are not adapted to
high-SNR frequency-dependent HSIs, even if they can be considered the best methods for
low and medium SNR HSIs.

USI # (a) (b) (c) (d)

#0 7.492 56.124 -5.513-e5 0.021

#1 7.331 53.740 -5.346-e5 0.021

#2 6.663 44.400 -5.365-e5 0.021

#3 6.966 48.530 -5.442-e5 0.021

#4 6.406 41.037 -5.429-e5 0.021

#5 6.778 45.943 -5.207-e5 0.021

#6 7.125 50.767 -5.318-e5 0.021

Table 4. (a) Standard deviation reduction factor after denoising with DBBD, (b) the associated
surface reduction for the IASI-NG simulated USIs, (c) mean and (d) STD of the Pearson
auto-correlation of G̃ − Ĝ′ν (the removed signal) excluding the diagonal. The noise is
simulated according to the tabulated NEDT of the sensor and applying Eq. (1) to obtain its
realistic frequency-dependent STD.

dictionary-based methods start to be more adapted to denoise such signals. Nevertheless, notice
that DBBD learns a basis for each group of similar pixels, and that the decay of eigenvalues for
each basis is very sharp. Hence, DBBD can be assimilated to a local dictionary learning.

4.2. Evaluation with Real USIs

The evaluation of the denoising performance with real USIs can only be done through indirect
methods such as the analysis of the correlations introduced (Sec. 4.1).
We used the five real USIs shown in Fig. 5 acquired by the IASI instrument [43]. We will

refer to these real USIs as USI #7, . . . , #11. Each of the acquired images is 120 × 23 pixels
with 8461 spectral channels. Since these are real USI images, there is no GT to compare to,
but the autocorrelation of the removed signal can be analyzed. As explained in Sec. 4.1, we
expect that the distribution of the Pearson auto-correlation coefficients out of the diagonal is
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Fig. 11. Noise reduction before and after denoising with DBBD with IASI-NG USI #6. In
red: the model’s theoretical NEDT of the noise according to the physical model. In blue: the
NEDT of the noise after DBBD denoising. The amount of noise has decreased significantly.

USI # Noisy VBM3D [11] DBBD Chen [20] PCA bands TDL [17]

#0 21.74 27.45 35.75 35.90 28.91 35.26

#1 13.83 24.71 30.85 29.53 25.31 29.47

#2 25.82 34.50 39.41 39.85 30.95 38.92

#3 24.79 32.51 39.58 40.13 29.86 38.26

#4 24.47 33.57 39.24 39.35 30.22 37.92

#5 27.67 37.18 40.53 40.86 30.72 40.81

#6 20.02 30.96 36.56 35.83 29.41 35.24

Mean 22.62 31.55 37.42 37.35 29.34 36.55

Table 5. Mean MSNR for the seven simulated IASI-NG USIs for VMB3D, DBBD, Chen’s
method, PCA band by band, and TDL in the case of low SNR and a reduced number of
channels. We multiplied by 10 the STD of the noise and took one out of 70 wavenumbers (a
total of 242). Now the difference between Chen and DBBD is not significant. The method
by Chen should be preferred in this scenario, since it performed better in a majority of USIs.
TDL shows competitive results, as expected.

centered at zero and with small variance (it should be zero in the case of an ideal perfect denoiser).
The introduced correlation remains small even if groups of channels have similar underlying
information. This is particularly important for remote sensing applications which can benefit
from increased SNR, for example for retrieval of atmospheric and surface temperatures or ozone
atmospheric profiles only if no bias has been introduced [22, 44].
Table 6 shows the statistics of the histograms of the Pearson cross-correlations coefficients

along all frequencies of the removed signal in real USIs #7 . . . #11. For the real IASI data (8461
channels) Chen’s method has values very similar to PCA-bands because with a reduced number
of channels its thresholding simply set to zero the less significant PCs (as PCA does). The
autocorrelation is better in DBBD. Note however that when the number of available channels is



larger (as in the IASI-NG case, see Table 5, and also Tables 2 and 3), Chen clearly outperforms
PCA. The goal of this experiment is to show that indeed these methods are valid to denoise
ultraspectral images.

Statistics of the histograms of the Pearson cross-correlations coefficients along all frequencies
of the removed signal in real USIs #7 . . . #11. For the real IASI data (8461 channels) Chen’s
method has values very similar to PCA-bands because with a reduced number of channels its
thresholding simply set to zero the less significant PCs (as PCA does). The autocorrelation is
better in DBBD. Note however that when the number of available channels is larger (as in the
IASI-NG case, see Table 5, and also Tables 2 and 3), Chen clearly outperforms PCA. The goal of
this experiment is to show that indeed these methods are valid to denoise ultraspectral images.

Mean STD

USI # (a) (b) (c) (d)

#7 -2.21e-5 6.88e-5 3338.96e-5 3446.04e-5

#8 -4.80e-5 63.16e-5 3452.47e-5 5675.18e-5

#9 -5.77e-5 11.81e-5 3327.54e-5 3722.74e-5

#10 -3.77e-5 32.29e-5 3516.86e-5 6539.90e-5

#11 9.91e-5 -9.23e-5 3297.69e-5 2510.47e-5

Mean -1.33e-5 20.98e-5 3386.71e-5 3386.71e-5

Table 6. Statistics of the histograms of the Pearson cross-correlations coefficients along all
frequencies of the removed signal in real USIs #7 . . . #11. (a) means in DBBD, (b) means in
PCA-bands and Chen, (c) STDs in DBBD, and (d) STDs in PCA-bands and Chen. For the
real IASI data (8461 channels) Chen’s method has values very similar to PCA-bands because
with a reduced number of channels its thresholding simply set to zero the less significant
PCs (as PCA does). The autocorrelation is better in DBBD. Note however that when the
number of available channels is larger (as in the IASI-NG case, see Table 5, and also Tables
2 and 3), Chen clearly outperforms PCA. The goal of this experiment is to show that indeed
these methods are valid to denoise ultraspectral images.

IASI measures wavenumbers from 645 cm−1 to 2760 cm−1 along 8461 channels. Therefore
it has a spectral resolution of 0.25 cm−1/ch. For example, the NO2 molecule can be detected
between 1290 and 1306.19 cm−1 (a bandwidth of 15.52 cm−1 or equivalently 51 IASI channels).
If a denoising method happened to correlate these 51 wavenumbers, it could prevent the detection
of NO2 or produce false detection of other molecules.

5. Consequences for the Instrument’s Resolution

In this paper we presented a new denoising method for hyperspectral and ultraspectral imaging
based on the physical noise model given by Planck’s law. We designed a noise estimation
procedure adapted to real USIs and verified on simulated and real data that it retrieves the
physical noise model. The noise estimation can favorably be used instead of the physical noise
model as discussed in Sec. 2.1. It is a simple remedy for the insufficiency of the black body
assumption, the differences between pre and post flight radiometric characterization, the signal
saturation in the sensor, and finally the band overlapping. It is well known that a bad noise model
leads to bad unmixing results [45]. Our experiments substantiate the usefulness of the physical
model and, still better, of its real estimation. They not only allow to remove the exact amount
of noise, but also help keep low the correlation introduced in the denoised signal. Finally, the
method is full-spectrum in the sense that it denoises the totality of the spectrum [20] and not only
high-energy PCA channels.
We did three types of evaluations. The MSNR and Structural Similarity (SSIM) metrics are



important indicators of success when a GT is available. But we saw that the autocorrelation of the
removed signal is perhaps a still more faithful indicator, actually more reliable than the MSNR or
SSIM. While the MSNR and SSIM give crucial information on the denoising performance (for
simulated data), a high MSNR does not guarantee that the removed noise is uncorrelated.
We showed that the performance of both TDL and VBM3D was poor in terms of the MSNR

and SSIM metric. This must be understood in the context of the problem of high-SNR frequency-
dependent noise in the case of ultraspectral imaging, for which these methods are not adapted.
They can be considered the state of the art and clearly they are the best methods for data with
a lower SNR and with a noise model which does not depend on the frequency, but they are
simply not adapted to this new scenario. These methods do not take into account the fact that
the variance of the noise depends on the frequency in their model, while in our method it is
deeply integrated. Of course, one can always try to stabilize the variance with the Anscombe
transform [46,47] or other specific variance stabilizing transforms (VST), but the performance of
the stabilization depends greatly on the size of the data and the introduced errors might be too
large for the high-SNR case. In general, it is preferable to avoid the VST and integrate the fact
that the noise depends on the frequency in the model itself. Other methods, such as Chen’s and
DBBD are more adapted to this kind of high-SNR USI data.
Yet one of the most important goals of hyperspectral imaging is the characterization of

materials and their abundances. The performance of unmixing algorithms might be altered by any
unduly introduced correlation in the restored signal. A significant advantage of the correlation
measurement is that it can be measured in absence of GT. This has led us to demonstrate that the
correlation introduced by our denoising method is very low on IASI real data.

The fact that DBBD does not introduce a significant correlation in the denoised signal and that
MSNR and classification results after denoising is largely improved raises an important question
in satellite design: is its resolution adequate to its goals? Indeed, in Table 4 we showed that for
IASI-NG the standard deviation of the noise can be reduced by a factor of the order of 7. This
means that it might be possible to reduce the surface of the sensor by a factor of the order of 50
while keeping the same SNR.

Thus, we propose to improve the current hyperspectral sensors by means of image denoising
algorithms, with a special focus on the future IASI-NG to be launched in 2021. It is typical for
hyperspectral sensors to have a large spectral resolution, but a very small one spatially. Getting a
large enough SNR is the reason for the scarce spatial resolution. An increase of the SNR would
allow to increase the spatial resolution delivered by the satellite, assuming the same sensor, or
to design a new sensor whose surface is adapted to the image processing algorithms that will
be applied. The resulting optical apparatus (and satellite) would therefore be much cheaper for
an equal final resolution and SNR after processing. Alternatively, a much higher resolution
apparatus would be obtained for the same overall cost. These comments apply retrospectively to
the flying IASI and to future projects like IASI-NG. In short, we propose to move towards hybrid
systems combining the optics of the instrument with the potential of image denoising algorithms.

In a future work, we seek to get a-priori information on the natural correlations introduced by
the instrument itself in the spectral channels, by analyzing the data acquired at the same zones
along different satellite passes. This information would be added to the noise model and help
measure the correlation introduced, thus further improving the results.
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