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1 Introduction

This document describes my Project of the Computer Science degree at Uni-
versitat Oberta de Catalunya (UOC), in the Arduino area. Specifically, the
objective was to develop firmware for both the Arduino-compatible boards
of the Smart Citizen initiative, and for the RTX4100 low-power WiFi.

The objective of the Smart Citizen project [1] is to foster the people in
cities to collect environmental data (level of noise, concentration of gases,
or humidity, among others) using sensor boards owned by the citizen users
(known as Smart Citizen Kit, SCK). These data are transmitted to a central-
ized platform that makes public all the collected information. This enables
anyone to browse the data over a map in the web or a mobile application.

The specific goal of this project is to improve and optimize the firmware
of the current versions of the sensor boards and also to write code for the
next hardware version of the boards. Since the SCK, maintains compatibility
with the Arduino IDE2 [2] and both share the same Atmel microcontrollers
found in the Arduino Leonardo [3]. Therefore it is possible to program it
with the Arduino IDE, even if the SCK is not an Arduino board itself.

This project has two independent parts. In the first part the current state
of the firmware code corresponding to the sensor board will be analyzed,
optimized, and any found errors will be corrected. In the second part of
the project it will be designed a brand new API3 to interact with the new
low-consumption WiFi module that will be used at the new SmartCitizen
boards. These new boards are not yet in production and, consequently, there
is not any firmware available. Therefore, it will be designed and written from
scratch.

1.1 Contextual bibliographic resources

This section recommends five articles that will help the reader to better
understand the context of the project, especially the Smart Cities concept.
For each bibliographical resources it is listed: (1) Title, (2) Authors, (3) Date,
(4) Source, (5) Summary, and (6) Explanation why the resource relevant for
the project.

1) Understanding Smart Cities: An Integrative Framework [4]
2) Chourabi, H. and Taewoo Nam and Walker, S. and Gil-Garcia, J.R.

and Mellouli, S. and Nahon, Karine and Pardo, T.A and Scholl, Hans Jochen.
3) January 2012.

2Integrated Development Environment.
3Application Programming Interface.
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4) International Conference on System Science (HICSS), 2012 45th Hawaii.
5) The concept of “smart cities” is emerging strongly during the last

years with the objective of solving problems of urban population in different
kind of cities, caused by the fast grow in the number its habitants. How-
ever, just a few articles in the literature take care of the problem and this
paper tries to explore the problem and identify what are the characteristics
that should have any smart city. The authors identify up to eight signifi-
cant factors: management and organization, technology, governance, policy
context, people and communities, economy, built infrastructure, and natural
environment.

The ability of the habitants of the city to acquire and share information
is vital, since the kind of information that can be collected has to do with
pollution, quality of air, quality of water, light pollution during night, or
levels of noise, among others. These indicators have a clear impact on the
economic and environmental health of the city and its citizens. If the data
is made public governments can take improvement actions.

6) This article without any doubt is relevant for the project, since it
defines objectively what is a smart city, with eight indicators, and the authors
explain why having a smart city is a great benefit for the health and well-
being of their habitants.

Although it is not a technical paper (as the selected other four), it is
important because it gives a sense to the question of why we should have
plenty of boards able to acquire data along the cities. They are cheap indeed,
but this is not a reason by itself to have them around.

However, there are deeper reasons than the technical possibility to create
smart cities, and these are the great benefits that come to the habitants:
independent public data for everybody (independent from the official data
that governments may collect), and the possibility to use this information to
press governments to improve the quality of the cities.

1) Sensor Networks for Ambient Intelligence [5]
2) Pauwels, E.J. and Salah, Albert A. and Tavenard, R.
3) October 13-16.
4) IEEE 9th Workshop on Multimedia Signal Processing, 2007. MMSP

2007.
5) This article has two well differentiated parts. In the first, the authors

do a review of the state of the art in multimodal sensor networks. Multimodal
networks are made of sensors which acquire data of different nature, as sound
level, light intensity, or gas levels, for example. Nowadays technology has
evolved enough to allow the sensor boards to be small, cheap, and with
low power consumption. Therefore, now it is possible to perform pervasive

7



computing techniques in a highly distributed and global system.
In the second part of the article it is discussed how to obtain temporal

patterns using the data coming from several sensors. This cross-signal corre-
lations allow to study the evolution of some magnitude along the space and
time. For example, gas movement throughout the city along different times
can be tracked.

Therefore, this article does not only brings up knowledge on the techni-
cal details of the state of art devices able to create large distributed sensor
networks, but also proposes a method to obtain higher level information
combining the data coming from sensors in different time series.

6) This article is relevant for this project since it reviews on one hand the
state of the art on multimodal sensor boards and, on the other hand, how to
integrate information from several sensors to obtain additional information.

The SCK is a multimodal board, since it contains sensors for noise level,
light intensity, CO and NO2 gases, temperature, and others, and therefore
the review that can be found in this article is absolutely related to the kind
of board the SCK board is. Knowing what are the best design pattern for
both the hardware and software of sensor boards will allow to avoid design
errors. In the case of this project, the hardware is already designed, but
there is still room for software refactoring.

About the integration of data coming from several sources, it might be
useful in order to detect defective boards that give outlier values compared
to nearby different boards.

1) An introduction to I2C and SPI protocols [6]
2) Leens, F.
3) February 2009.
4) Instrumentation Measurement Magazine, IEEE
5) This article discusses about two protocols that have standardized the

communication between electronic components: the inter-integrated circuit
(I2C) and the serial peripheral interface (SPI) protocols. Both two are suit-
able and wide used to communicate integrated circuits among them with
on-board devices.

The I2C protocol (“Inter IC4”) is a simple protocol designed to commu-
nicate integrated circuits inside a single board. Although initially it was
designed for slow communication (up to 100 kbps), nowadays the protocol
allows to a high speed mode up to 3.4 Mbps. It is widely used in part be-
cause of its simplicity, since only two bus lines are required, with flexible
strict baud rates, simple master/slave relationships between all components,

4Integrated Circuit.
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and software-addressable devices.
The other communication protocol covered by the article is SPI, for which

it is possible to obtain higher data transfer rates than I2C. It has duplex
capacity (communication in both senses at the same time). It follows a
master/slave relationship as I2C, but it lacks any device addressing.

6) This article presents how the I2C and SPI protocols work in order
to achieve that different integrated circuits over the same board are able to
communicate. Of course, these two protocols have a major interest for this
project, since the architecture of the SCK matches exactly the aim of the
protocols: to intercommunicate with a common standard different kinds of
sensors. In the case of the SCK, most of the sensors are able to communicate
as slaves within the I2C protocol, while the ATmega microcontroller takes
the role of the master. Even if the Arduino IDE offer an standard library to
I2C communication (called “wire”), the details on how to initiate a commu-
nication, or the addressing are still needed to be known by the programmer.
However, so far no SPI sensors are found in SCK, but they might be used in
the future.

1) Built-In Self-Test Techniques [7]
2) McCluskey, E.J.
3) April 1985.
4) Design Test of Computers, IEEE.
5) This classic article discusses several techniques for the BIST5, that is,

the possibility of configuring a device in a test mode in order that it generates
patterns of input data to check if the device is working properly.

Most of the techniques described are based on the use of linear-feedback
shift registers which are fed up with specific test patterns. The output of
many components of the integrated circuits are analyzed while the test pat-
tern is entering to look for any unexpected output. The improper outputs
imply a malfunction of the integrated circuit. When the integrated circuit
detects itself that some of its components is not working as it should, it sig-
nals the situation so the system can avoid using the failing component. This
is especially important for fault-tolerant systems.

6) The hardware of the SCK board that will be used in this project
is already build, but anyway any of its components may fail at any time.
Therefore, doing a BIST for the complete board would improve the reliability
of the whole system. For example, if a sensor fails and the firmware ignores
the problem or does not attempt to detect the failure, then wrong data could
be sent and shared. Although the article is now old, it is still valid for

5Build-In Self Test
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nowadays designs.
A failure may not only affect the sensors, but also the ATmega micro-

controller. Thus, performing a memory read/write test with several test
patterns and checking that basic operations give the expected value (for
example, sums, bitwise operations, or floating point computations, among
others) may detect most of the hardware errors.

With the current version of the firmware only 4Kb of memory are available
after programming the microcontroller. However, new versions of the board
hardware may contain microcontrollers with more EEPROM, thus allowing
BIST in production units.

1) An Incremental Approach to Unit Testing During Mainte-
nance [8]

2) Harrold, M.J. and Souffa, M.L.
3) October 1988.
4) Proceedings of the Conference on Software Maintenance, 1988. IEEE.
5) This article describes a methodology to be used in parallel of the

unit testing during the maintenance of the project. The authors define a
framework where units tests are integrated in the programming environment.
That is, unit testing is not performed not only at the end or after specific
milestones have been reached, but continuously.

Each time a module is modified, the test case may be modified accord-
ingly; if a new feature is added, then a new test case is created and added
to the programming framework. When the modification is a major update
(for example, a new version of the program with significant changes), then
a human tester needs to decide which of the test cases must be modified,
which removed, and how to modify the existing tests for the new version in
order to adapt the tests set to the new version.

6) A significant part of the work during this project will be testing, be-
cause it is a requirement of the program that any change made to the firmware
is tested for validity. In fact, this is a minimal requirement that any software
component should meet.

The development methodology that will be followed in this project implies
creating test cases for any functionality of the system, implementing the code
for the functionality and committing the change to the code repository only
if all tests are passed.

This approach (and what the article proposes) is very close to the Con-
tinuous Integration (CI) methodology. However, for this project it will not
be possible to use the CI approach strictly, since it requires automating the
build. However, this is not possible with the current version of the Arduino
IDE.
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Nevertheless, other steps of the CI can be met during the development
of the code of this project: single source repository, many commits into the
mainline, public visibility of the repository.

1.2 Keywords

These are the keywords which define this project:

• Ambient sensors

• Data sharing

• Embedded system

• Arduino

• Unit testing

1.3 Main objectives

The project has two clearly independent parts.
The first part is related to the current version of the SCK sensor board

and implies:

• Correct any detected bugs in the current code;

• Improve the current code (speed and memory used);

• Perform continuous refactoring of the code in development;

The objectives of the project changed after they were first defined given
that the tasks in the first part did not seem to be enough for a complete
Final Degree Work. Therefore, a second part was added to the project.

The goal of the second part of the project is to write from scratch the
firmware from the new low-power WiFi module for the next versions of the
future SCKs. Right now, it does not exist such a firmware and, therefore,
the code written as part of this project will be the first version. The new
firmware will provide an API that will make possible the communication
between the other modules of the SCK and the WiFi module.

Therefore, the objectives of the second part of the project can be sum-
marized as follows:

• Analyze and document the low-power WiFi module.
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• Write firmware to make the chip set of the WiFi module work and
provide an API.

• Document how the API works.

The following tasks are common to both parts:

• Make explicit the design of the system using class and activity UML
diagrams;

• Perform continuous refactoring of the code in development;

• Define a unit testing plan and make the system pass it completely each
time a new feature is added. Create a new unit test case for each new
feature. For this project, the testing is really significant: no component
of the system will be considered valid if a code change does not pass
all unit testing cases;

• Follow a methodology close to Continuous Integration;

• Finish the final report of the TFG before its deadline.

1.4 Benefits

The Smart Citizen project has clear benefits for their users. Perhaps the
most evident is the possibility of acquiring data by themselves using cheap
hardware and to be able to share it worldwide, without having to rely on
official data (which sometimes simply does not exist).

This data allows to evaluate an important indicator of what are called as
Smart cities : the quality of the environment. That is, the level of noise or
the concentration of unhealthy gases, among others.

For the users who install the sensor board indoor there is still an impor-
tant benefit, since they will be able to detect concentration of gases at home
that can put human life in risk, as CO and NO2 gases.
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Figure 1: Current SCK with both layers mounted. Only the top layer with
the sensors is visible. On the left, the battery that powers up the system.
On the right, the SCK.

2 Current system overview

2.1 System architecture

The current version of the SCK consists on two boards mount one over the
other. The top layer contains all the sensors and the bottom layer contains
the ATMega CPU, the WiFi module, the circuit to charge the battery, and
all other auxiliary circuitry. Both layers can work independently and it is
possible to remove the current sensor layer and to change it by a different
sensor board. The communication between the sensors and the bottom layer
is done using standard inter-chip communication protocols (I2C mainly and
SPI), making easy the interconnection of the two different layers.

Figure 1 shows on the right the current SCK with both layers mounted.
It can only be seen the top layer, which contains the sensors. On the left,
the battery which powers up the system when it works standalone. It is not
strictly necessary to use a battery, since the SCK can also be powered by
a micro USB6 connector. Of course, using the battery allows to locate the
SCK far away from the computer or any power source. Normally, the SCK
is battery-powered.

Figure 2 shows a detailed view of the sensors board. The kind and number
of sensors on the top board depends on the version of the SCK. In this version
(SCK Urban Shield v1.1) the following sensors are available:

6Universal Serial Bus.
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Figure 2: Detail of the sensors top board.

• Temperature and humidity (SHT21)

• CO and NO2 gas concentration (MICS-4514)

• Lighting level (BH1730)

• Noise level (Pro Signal ABM-705-RC)

• Battery level (obtained by reading and averaging an analog pin)

• Number of WiFi networks (obtained from the RN131 “WiFly” module)

The sensors board contains all the ambient sensors and must be connected
to the base board to work. Figure 3 shows how both boards are connected
together: there is a bridge on the right (red circle) that contains several
input/output pins that are used to retrieve information from the sensors.
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Figure 3: Detail on how both the sensors (up) and main (down) boards are
connected together. As can be seen, on the right there is a connector that
contains several input/output pins that are used to retrieve information from
the sensors. For most of the sensors the I2C communication protocol is used,
but it is possible to use SPI too, and even to read analog values.

For most of the sensors the I2C communication protocol is used, but it is
possible to use SPI too, and even to read analog values (see Section 3.1).

The SmartCitizen firmware needs to minimize the energy consumption
of the SCK. Since the WiFi module needs only to be active when it has to
send information to the central platform, the rest of the time it is in standby
mode. Note that it is only the WiFi module that is put in standby mode,
not the microcontroller unit. It could be possible to use a timer to wake up
the microcontroller and to put it in standby the rest of the time. In that
mode the microcontroller does not execute any instructions and its energy
consumption is minimal. It can be waken up by a hardware interruption and,
in the case of the SCK, it could be TIMER2 or any other. However, this
modification of the firmware is out of the scope of this part of the project
focused on the sensors board and is left as a future improvement.

The details on the activity cycle can be found in Section 2.2.

2.2 Activity cycle

From the moment the SCK is powered up the firmware is continuously run-
ning, until it runs out of battery or it is unplugged from the USB host.

As any standard Arduino program, the SCK code contains two main
parts.

The first part is the setup of the system, that is performed as soon as the
board is powered up or reset. Function setup() is automatically executed
after power up. In the case of the SCK, it contains a call to ambient .ini();

which configures the SCK timer and initializes the sensors board.
After setup() has been called, the loop() function is invoked. This

function is executed in a endless loop. Each time the function has finished,
it is called again. The loop() function calls execute() of class SCKAmbient,
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which checks the last time the sensors were read. If the elapsed time is large
enough, it starts the transmission of the data to the centralized platform
using the WiFi connection.

The microcontroller unit only needs to be active to read the sensors and to
send the data to the platform. The rest of the time it can be in standby mode
in order to save energy (this is specially important if the SCK is powered by
a battery). It can enter the standby mode by setting the AWAKE pin to
HIGH. In this mode, it does not execute any more instructions, the timers
are active and it is responsive to hardware interrupts. In fact, the only way
to make the microcontroller get out of the standby mode is by a hardware
interrupt. In the case of the SCK, TIMER #1 is configured to callback
ambient .serialRequests() each elapsed second. Each time the timer fires,
the microcontroller unit gets out of the standby mode and resumes normal
operation.

Inside ambient .serialRequests() the timer is stopped, the sensors
update, the ambient information is sent to the SmartCitizen platform, the
AWAKE pin is set to LOW (it enters standby mode again), and finally the
timer is configured to wake up the SCK in the next iteration. This way, the
microcontroller unit is only full active each time it needs to send data to the
platform and remains in standby mode the rest of the time, saving energy.

2.3 Development environment

This section discusses about the decision of having made the SCK Arduino-
compatible and which IDEs are available to develop the SCK.

The SCK hardware is compatible with the Arduino system (it even shares
the same microcontroller unit as the Arduino Leonardo, see Section 4). Some
of the advantages of Arduino are the fact that it is open source hardware
and software. There is also a wide community of Arduino users that develop
applications and libraries worldwide, making easy to find pieces of hard-
ware/software already available for many possible applications of Arduino.

Of course, it would have been possible to choose other alternatives instead
of an Arduino-like device, but the advantages are many:

• It is cheaper that other more complex alternatives, as Raspberry Pi,
HummingBoard, BeagleBone, or MinnowBoard, among others.

• The ATMega microcontroller, that share both the SCK and the Ar-
duino Leonardo, have many analog and digital pins, with integrated
ADCs7. This makes the design of the hardware of the SCK cheaper

7Analog to Digital Converter.
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Figure 4: Activity cycle of the SCK, from the time it is powered up.
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and simpler.

• Also, the ATMega microcontroller has built-in USB communication
support and, again, it simplifies the design of the SCK hardware and
also the software.

• There are plenty of well-known libraries for the Arduino that can be
used directly on the SCK. For example, the wire library for I2C and
SPI communication protocols.

• It is possible to directly use the C/C++ languages with Arduino. This
is important for the SCK, since C/C++ allows for the low-level access
required to communicate with the SCK hardware at the sensors board.

About the IDE environment, since the SCK is Arduino-compatible, it
is possible to directly use the Arduino IDE (Integrated Development Envi-
ronment) for coding. It simply suffices to configure the SCK as it was an
Arduino Leonardo Board.

However, the Arduino IDE has serious limitations. For example, it is not
multi-threaded and some operations needs to be finished before a new one
can be started. For example, it is not possible to edit the source code if
the IDE is compiling a large program. Another important limitation of the
Arduino IDE is the impossibility to debug the code (could be solved by using
a commercial debugging applications of an alternative IDE, Visual Micro, or
the new 6.2 version of Atmel Studio). However, Atmel Studio is not free
software (but cost-free).

The Arduino IDE lacks of code auto-completion and refactoring tools
(rename, extract superclass, extract interface, use supertype where possible,
encapsulate field, etc). Atmel studio supports code exploring, fast compile,
firmware upload, debugging, serial terminal emulation, and its project format
is compatible with the Arduino IDE. It supports the product development
process with integrated tools and software extensions through the Atmel
Gallery plugins.

As pointed out before, the Atmel Studio IDE alternative seems better
from the point of view of the offered features, but it is not free software and
could turn into proprietary software without notice, creating an undesired
dependence.

There exist free software alternatives, as the Eclipse Arduino plugin, a
professional and mature tool. It is also possible to use Arduino plugins with
the NetBeans IDE, which are similar to the Eclipse Arduino plugins.

In conclusion, the Arduino IDE is the official IDE for the Arduino de-
velopment, but it seems to be an immature tool yet. Better free software
alternatives exist, as the plugins for Eclipse and Netbeans IDEs.
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3 The sensors board

The SCK is made of two boards. On the top, the sensors board, which
contains all the ambient sensors and communicates with the base board with
the I2C or SPI protocols. As shown in Figure 3, there is a physical connector
that joins both two boards and communicates the sensors and the base board
with I2C or SPI. Section 3.1 gives a brief introduction of the I2C and SPI
protocols.

The rest of the subsections here list the sensors used in the sensors board
and discuss their characteristics and how the information is retrieved from
them.

3.1 I2C and SPI communication protocols

Both the I2C (Inter-Integrated Circuit) [9] and SPI (Serial Peripheral Inter-
face) [10] protocols were designed to make it possible for different integrated
circuits to communicate between them, using a common communication pro-
tocol and common electrical specifications.

The I2C protocol was created by Philips in 1982 in order to interconnect
audio and other kinds of chips, while SPI was initiated by Motorola in 1985.

In the I2C protocol uses four wires, two for data transmission (SDA8

and SCL9) and other two for power (Vcc and ground). It is a master-slave
protocol, where the master initiates the communication and the slaves accept
the query. Each device (master or slave) has an unique address (typically 7
bits, but up to 10 bits can be used for the address depending on the device).

The protocol is simple: the master puts the address of the slave device
in the bus, then 1 bit to specify if it wants to read or write data, and then
sends one or more commands. Then the slave will answer to the master
and eventually there will be more data exchange between master and slave,
depending on the concrete operation being executed.

The transmission is serial, bit by bit. The SDA line carries the actual
information bits whereas SCL is a clock signal generated by the master. The
maximum speed is 5 Mbps with Ultra Fast-mode (UFm).

In the case of the SCK, in the current version all sensors use I2C to
communicate:

• SHT21 (temperature and humidity)

• MICS-4514 (CO and NO2)

8Serial Data Line.
9Serial Clock Line.

20



• BH1730 (lighting level)

There are several advantages that justify the use of I2C:

• The hardware is easy to implement and debug, since it only uses two
signals (data and clock).

• It is possible to select each device with an unique address. In the
SCK case, it means that is easy to add more sensors without almost
modifying the architecture of the system, just adding them over a new
sensors board.

• Simple master/slave mechanism.

• In the case of the SCK, the I2C protocol is supported natively by the
Arduino wire library.

On the other hand, there are some disadvantages:

• Not all devices may support high speed transmission rates. This is not
a problem for the SCK, since most of the sensors do not need high
speed rates.

• If low-speed devices are mixed with high-speed devices the final speed
for all devices will be the slowest speed.

• Electrically I2C uses open-drain connections, which imply more current
drain. For the SCK this is a clear disadvantage.

• Is not full duplex (but high-speed modes are available). For the SCK
this is not an issue, since most of the time the SCK is in standby mode.

Since the new SCK boards will contain a new low-power WiFly module
that communicates using SPI, this protocol will be discussed briefly here.
Other sensor boards in the future may contain sensors that communicate
with SPI too.

In the case of the SPI protocol four wires are used too:

• Clock (SCLK)

• Master Output Slave Input (MOSI)

• Master Input Slave Output (MISO)

• Chip Select (CS)
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SPI also uses a master/slave schema, but it does not use numeric addresses
to choose a device. Instead, it uses the CS signal to select which device
the master needs to communicate with. When the CS signal connected to
a device is active (with a LOW state), the slave device is selected and the
communication begins. The MOSI and MISO signals determine if the master
is writing and the slave reading (MOSI) or if the master is reading and the
slave writing (MISO).

There are some advantages of SPI over I2C:

• It is full-duplex. However, for the SCK this is not important, since
most of the information goes from the sensor to the microcontroller,
and not the other way around.

• Less power consumption than I2C. This is important for the SCK, since
it is battery-powered.

• Easy to select a slave chip using the CS signal. No need to use numeric
addresses.

However, there are some disadvantages on using SPI:

• No hardware flow-control. In I2C it is possible for the slaves to pause
the transmission if the rate is too high and their buffers are about to
overflow. For the SCK it is not an issue, since most of the sensors are
low-speed.

• There is not a formal standard for SPI and therefore it is not possible
to say if a device is fully complaint with SPI or not. This is an issue
for the SCK, since new sensors may be added to a sensors board and
there is no warranty they work.

3.2 Caching pattern

The SCK implements the catching design pattern [11], in which the API is
not forced to perform an actual and physical read of the sensor each time
the layer that uses the API asks for sensor information.

Instead, the SCK timer fires once per second and updates the information
of all sensors in a cache array. The sensors API simply returns the cached
values each time the getter functions are invoked.

Using a cache for the sensors is specially important for the gas sensors,
because it is not possible to read them continuously. Instead, a minimal
amount of time (typically ten minutes) must elapse between reads. Therefore,
a second layer of cache is used for the gas sensors. Even if the SCK timer
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Figure 5: Frontal detail of the Pro Signal ABM-705-RC microphone used in
the SCK. Image obtained from the UK Farnell website.

fires each second, the gas sensor getter simply checks if at least ten minutes
have elapse. If not, it returns the last cached value and returns it to the
sensors API.

Note that the SCK does not pre-heat the sensors just before each read,
but instead it keeps their corresponding heaters always activated. Of course,
the disadvantage is the current consumption (needed to heat the sensors) but
the reads are much more stable and accurate this way.

3.3 The sensors

In this section the captors over the sensors board are documented, giving
details about the detection mechanisms, the communication protocols, and
how the SCK accesses to them.

3.3.1 Microphone

The SCK uses the Pro Signal ABM-705-RC microphone [12] (Figure 5 shows
a detail of its frontal view).

It is a classic analog omni-directional microphone which can operate with
a voltage that goes from 2v to 10v. This voltage range makes it adequate
for its use within the SCK, since the typical 5v voltage used by low-power
CMOS devices is within this range. The SCK can provide its required power
voltage directly.

Also, its maximum current consumption is 0.5mA, which is really small
and thus makes it a perfect candidate for its use in the SCK, given that it is
battery-powered and it requires all devices to be low-power.

Its audio frequency range goes from 50Hz to 16KHz. This frequency range
is sufficient for most applications, but it is possible to find noises whose fre-
quency goes over 16KHz. We can think, for example, in the typical noise pro-
duced by old CRT televisions when they are working. This tone is 16744Hz
and therefore it would not be detected by this microphone.
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Figure 6: Detail of the SHT21 temperature and humidity sensor by Sensirion.

Also, it is possible for humans to hear (and to be bothered) by low-
frequency sounds below the 50Hz threshold of this microphone. For example,
the lowest note of a tuba or grand pipe organs is centered at 16.35Hz, and
therefore not detectable by this microphone (but yet audible by humans!).

In conclusion, this microphone implemented in the SCK is valid for most
applications but in next versions of the hardware of the SCK it should be
considered to change it by some other microphone that at least covers the
complete human frequency spectrum (20Hz-21KHz).

About its sensitivity, its datasheet is not clear about how many decibels
corresponds to the low threshold, but the tests I’ve performed seem to indi-
cate that the minimum noise level it is able to detect is about 15dB, which
is sufficient for the SCK purposes.

In the SCK firmware, the noise level is obtained with SCKAmbient::getNoise().
The microphone is connected to an amplifier (the gain is configurable, but
is fixed to 10000 in the code for this microphone type) and a filter. The
output of the filter to is connected to an ADC that turns the analog voltage
level into a digital value between 0 and 1023. The output of the ADC is
connected to the SCK digital pin S4, which can be read using the Arduino
analogRead() function.

Function SCKAmbient::getNoise() gives the results with respect to the
Vcc level, that is,

L =
average(S4)

1023
× Vcc (mV ).

3.3.2 Temperature and humidity (SHT21)

The SCK uses the SHT21 sensor by Sensirion to obtain information about the
environmental temperature and relative humidity. Figure 6 shows a detail of
the sensor.

The interaction with the device is fully digital using the I2C protocol.
It is able to give values of relative humidity with 12-bits and temperature
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values with 14-bits resolutions.
There are several advantages on using this sensor in the SCK:

• Low power consumption (1mW when reading).

• It does not need any calibration and it is long-term stable. This is
specially important for the SCK, since average users are not qualified or
do not have the tools to calibrate the sensors. Compare this sensor with
the SCK gas sensors described in Section 3.3.3, which need calibration
and are not stable along time.

• Good resolution (12 bits for relative humidity and 14 bits for temper-
ature reads).

• Wide temperature range, with accurate responses within the range -10
to 80 Celsius.

• Wide relative humidity range, with accurate responses within the range
8% to 90%.

The relative humidity (RH) is obtained with the following equation:

RH = −6 + 125 × SRH

2RES
,

and the temperature (T) with this equation:

T = −46.85 + 175.72 × ST

2RES
,

where RES is 12 bits when measuring relative humidity and 14 bits for tem-
perature measurements.

In the SCK firmware, function SCKAmbient::getSHT21() updates two
member variables when called: lastTemperature and lastHumidity. This
function call another function SCKAmbient::readSHT21(uint8 t type) that
receives as a parameter the corresponding command to the sensor.

SCKAmbient::getSHT21() calls SCKAmbient::readSHT21(0xE3) (read tem-
perature) and SCKAmbient::readSHT21(0xE5) (read relative humidity) and
updates lastTemperature and lastHumidity.

3.3.3 CO and NO2 (MICS-4514)

The SCK can measure the level of CO and NO2 gases with the MICS-4514
sensor (both captors are integrated inside the same package, as show in Figure
7). The sensor is completely analog and is based on the fact that the presence
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Figure 7: MICS-4514 sensor without the protective cap, showing both CO
and NO2 captors.

of these gases produce free electrons in the surface of the detectors when they
are absorbed. These free electrons are nothing else but a current that, after
being amplified, can be detected. It is somehow similar to the process used
to detect photons in CCD or CMOS devices with the photoelectric effect, but
triggered by gas molecules instead of photons. Of course, both are completely
different physic processes, but the idea behind the sensors is similar.

From the point of view of the detection circuits, the sensors can be seen
as a resistance RS whose value in ohms decreases as the concentration of gas
increases.

Figure 8 show the typical measurement circuit. For both gas detectors,
a load resistor R0 (typically 820Ω) is used and the concentration of gas is
obtained from two known curves. Figure 9 shows the CO concentration
depending on the RS/R0 ratio and Figure 10 the same for the NO2 concen-
tration.

Since the detected gas concentration depends on the temperature of the
sensor, it needs to be pre-heated. The objective is to bring the sensor to
a high enough temperature that the ambient temperature is not significant
with respect to the sensor temperature (more than 200◦C). This is a dis-
advantage for the SCK, since this makes impossible to perform consecutive
reads without a time less than ten minutes between them. As explained in
Section 3.2, the SCK implements a caching pattern strategy to be able to
give interpolatable data to the platform, even if the less than ten minutes
have elapsed since the last read. If the system reads the value before ten
minutes have elapsed, the API simply returns the last value read. This way
the software that uses the API can perform safely as many reads as needed
without taking into account the elapsed time, since the firmware API will
only execute an actual read in the sensor if the timing makes it possible.
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Figure 8: Measurement schematic for the MICS-4514, to detect CO and NO2

gas concentration.

Figure 9: MICS-4514 CO concentration depending on the ratio RS/R0.
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Figure 10: MICS-4514 NO2 concentration depending on the ratio RS/R0.

There are several characteristics the make this sensor adequate for the
SCK:

• The heating current is low. This is specially important since the SCK
is battery-powered.

• The gas concentration detection range is wide.

• It can operate within a large temperature range.

• It combines in the same package both the CO and NO2 sensors.

• It is robust to vibrations and shocks. This is important for the SCK,
since it is likely that some users place it outdoors, where the wind can
shake it violently.

However, this sensor has a very important disadvantage (like many of the
same technology), that is the necessity of re-calibrating the device after a few
months, because the pairs of metal-oxide in the surface of the captor change
their physical properties when exposed to the detectable gases. Therefore,
the curves shown in Figures 9 and 10 are not valid after some months of
continuous operation and the device needs to be re-calibrated in order to
know exactly the actual concentration curves.

Of course, average users do not have access to the laboratory instruments
needed to re-calibrate the MICS-4514 and they are likely to obtain wrong
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values of gas concentration after some months of operation. This is a seri-
ous issue, since one of the objectives of the SCK project is to give citizens
the possibility of obtaining reliable environmental data that could be used to
convince governments of the need of improving the air conditions. If counter-
part might are that the data is reliable because of the lack of calibration, the
whole SCK could be considered non-reliable. For next versions of the SCK
the use of better sensors that are not so sensitive to de-calibration should be
strongly considered.

In the SCK firmware the actual read of the CO and NO2 (assuming that
the ten minutes minimum time has already elapsed) is implemented with the
following function:

void SCKAmbient::getMICS(){

// Charging tension heaters

heat(MICS_5525, 32); // mA

heat(MICS_2710, 26); // mA

RsCO = readMICS(MICS_5525);

RsNO2 = readMICS(MICS_2710);

}

The heat function simply adjusts the current that goes through the heater
in order to maintain a constant temperature.

Note that the firmware code assumes that in the circuit there are two
different sensors (MICS-5525 and MICS-2710) instead of the MICS-4514.
The reason is simply that MICS-4514 combines both the CO andNO2 sensors
inside the same package, but from the point of view of the software there
is not any difference between having separated MICS-5525 and MICS-2710
chips or a single MICS-4514, since the two captor in MICS-4514 operate
independently (for example, they have they own pre-heater).

Function void SCKAmbient::getMICS() first pre-heat each captor and
then read the value of concentration using function readMICS. Then, function
readMICS reads the digital value at the output of the ADC connected before
the output of the sensor and returns a value of concentration with respect to
Vcc.

Note that function void SCKAmbient::getMICS() DO NOT give the
value of the gas concentration using Figures 9 and 10, but just the value
of RS given by the sensor. This value without the calibration data is not
useful but itself. The idea is that is value is transmitted to the SmartCitizen
platform to be converted into concentration values. But still the problem is
the sensor calibration is not solved.
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In my opinion, the problem of the de-calibration of the gas sensors in the
SCK is not solved at all and it should be absolutely addressed and prioritized
in new versions of the SCK hardware.

3.3.4 Lighting level (BH1730)

To measure the quantity of ambient light the SCK uses a BH1730 sensor,
which uses a LDR10 combined with a ADC and the corresponding circuit
that allows to communicate with the device with the I2C protocol.

There are some characteristics that make this device suitable for the SCK:

• No need of external ADC or linearization circuits (compare this with
the gas sensors in Section 3.3.3. Uses the well-known I2C protocol (with
slave address 0101001), which is supported natively by the Arduino
library with the wire library.

• Its resolution is 16-bits for the range of 0.008 to 65535 lux, which is
excellent.

• It is possible to adjust by a I2C command the kind of light that it
should measure (visible or infrared). The infrared channel is not used
in the current version of the SCK, but it could be considered in future
versions.

• Low power consumption, which is really needed by the SCK.

• Able to reject light at 50Hz/60Hz (electric network frequency), which
is excellent for its use within the SCK, since it filters the interference
is artificial light.

In conclusion, this device is excellent for its use within the SCK.
In the SCK firmware the function that is used to obtain the light level is

uint16 t SCKAmbient::getLight(). It does the following:

1. Starts a I2C communication to the device using this slave address
0101001 and sends the command to read visible light.

2. Waits for 100ms.

3. Reads two bytes (DATA0 and DATA1) from the I2C bus.

4. It obtains the intensity in lux units using expression

α× DATA0 − β × DATA1,

where parameters α and β depend on the ratio DATA1/DATA0.

10Light Dependent Resistance.
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3.3.5 Battery level

Most of the data transmitted to the Smart Citizen platform comes from
ambient sensors. However, the battery level it is an important parameter
about the SCK state. Therefore, the battery charge level is sent along with
the rest of ambient data coming from regular sensors.

The battery level is obtained by averaging an analog pin connected to the
anode of the LiPo11 battery. Note that the battery will return a value of 3.7v
when fully charged and values that go from 0v to 0.7v when discharged, but
the SCK needs 3.3v of Vcc to operate correctly. Then, a simple low-dropoff
voltage regulator is used to set the voltage at the output to the desired value
(3.3v). If the ATMega microcontroller is powered with 3.3v instead of 5v, its
performance is worse (it works at 8MHz instead of 16MHz), but is current
consumption is also lower. For the SCK it is clearly preferable to sacrifice
the microcontroller speed for the sake of energy consumption.

In the SCK the battery level is obtained by averaging the voltage of the
analog pin labeled as BAT (0xA7) with function uint16 t SCKBase::getBattery(float

Vref). It simply executes average(BAT), rescales the obtained digital value
between the range [0, 1023] and returns the rescaled value.

Note that with this procedure what is really read is the voltage at the
output of the battery (before the voltage regulator). It is indeed related to
the charge in the battery, but the relationship between the voltage at the
anode and the actual charge is not linear. Therefore, a problem with this
approach is that even if the power consumption remains stable, the users
may perceive that the level of charge decreases faster when the charge is low,
compared with the rate when the charge is high. This could be a problem,
since most users are used to the fact that the battery level of their domestic
devices (tablets, smartphones, GPS, etc) is related directly to the level of
charge.

A possible solution to this problem is to encode in the SCK firmware
the charge/voltage curves, but this improvement is out of the scope of this
project.

Note also that in the original firmware the function float SCKBase::readCharge()

appears, but it is not used elsewhere in the code. It seems to be dead code and
therefore it was removed in the improved version of the firmware presented
with this project.

11This is a commonly used nomenclature for the Lithium-Polymer batteries.
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3.3.6 Number of WiFi networks

Similar to the case of the battery level (Section 3.3.5), the number of WiFi
networks makes part of the data send by the SCK to the SmartCitizen plat-
form.

This data is obtained from the RN131 “WiFly” module. In the firmware,
it is obtained by calling function base .scan();, which calls uint32 t SCKBase::scan()

to obtain the number of WiFi networks available at that particular moment.
Note that the number of networks simply counts how many WiFi networks
have been detected, regardless if the user has or has not the encryption key
to connect to them.

The communication with the “WiFly” module is done by serial commu-
nication (supported directly by the Arduino libraries) and with very ver-
bose commands. Very verbose means that the communication is not with
the I2C or SPI protocols, but interchanging ASCII messages. For exam-
ple, command scan is used to obtain the list of networks. The answer is a
list of ASCII strings that the firmware splits and counts accordingly, each
of them containing the name of each detected network. Function uint32 t

SCKBase::scan() simply counts how many strings are in the verbose answer.

4 The base SCK board

In order to complete the documentation of the SCK, this section describes
briefly the base SCK board. However, note that the objective of this first
part of the project is to document an improve the part of the firmware related
to the sensor board and not working on the base board of the SCK. However,
since obviously the sensor board can not work without the base board, it is
documented here for completeness.

As explained in the introduction, the SCK is made by two boards:

• The sensors board

• The base board

The sensors board (documented in Section 3) contains all the ambient
sensors of the SCK and the bridge to communicate the sensors with the
base board. Figure 3 shows how both boards are interconnected with the
I/O bridge. Most of the communication is made through the I2C protocol.
However, some of the sensors are analog. In that case, the data is first
converted by an ADC before it goes from the sensors board to the base
board.

The base board contains the following elements:
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Figure 11: Detail of the base board.

• The ATMega32U4 microcontroller unit.

• The WiFi module. In the current version of the SCK is the RN131
“WiFly”.

• RTC12 chips DS1339U and DS1307Z.

• Other components, like amplifiers, voltage regulators, power manage-
ment chips, bus communication, etc.

Figure 11 shows a picture of the base board and identifies its main compo-
nents. In this section, the ATMega32U4 microcontroller unit and the WiFly
RN131 modules are discussed.

The ATMega32U4 unit is a low-power AVR 8-bit microcontroller, with
RISC13 architecture.

Some of its characteristics make it a good candidate for its use in the
current SCK and future versions of the hardware of the SCK:

• Low power consumption with at maximum 200mA according to the
official datasheet [3].

12Real Time Clock.
13Reduced Instruction Set Computing.
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• It is possible to put the microcontroller in a low-power sleep mode and
to resume normal operation when a timer interrupt fires (see Section
2.2), in order to save energy.

• It is exactly the same microcontroller unit used by Arduino Leonardo,
and therefore most of the existing code for Arduino Leonardo can be
reused or adapted in the firmware of the SCK. Also, this encourages
users that may have written code for the Arduino Leonardo to adapt
it for custom firmware in the SCK or even to try new custom sensors
boards.

• It has built-in support for the USB 2.0 bus. This simplifies the SCK
hardware, since it does not need to implement any extra circuits to
transmit data through the USB bus to program the microcontroller
with the firmware.

• It has 12-channel 10-bits ADCs built-in. Again, this simplifies the SCK
hardware and avoid adding specialized hardware for analog to digital
conversions.

• It is fast (it can run at 16MHz, 16 MIPS14).

However, there is an important limitation on the use of this microcon-
troller, since it only has 32Kb of internal EEPROM available for the firmware.
With the Arduino libraries loaded, only 28Kb are actually available. The cur-
rent version of the SCK is about 27Kb and therefore almost all the internal
memory of the microcontroller is full after programming. This is a problem
if in the future more sensors need to be added to the sensors board or new
algorithms need to be implemented in the firmware.

The base board also contains the Microchip RN131 “WiFly” module [13]
for wireless communication. Although the datasheet states that it has a
Ultra-low power design for battery powered applications, its consumption is
about 210mA (close to the microcontroller unit consumption). Nowadays
it is no longer possible to consider such a current consumption as ultra-low
power and there exist several alternatives that perform much better in terms
of power consumption. The second part of this project is about writing the
firmware of the new low-power WiFi module that will be used in the new
versions of the hardware of the SCK.

There are other problems associated to this WiFi module. The range of
temperatures within it can work is from 0 to 70 Celsius. The high limit is
enough, but the lower limit at 0 Celsius is too high for most applications. If

14Millions of Instructions Per Second.
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the SCK is used outdoors, it is likely that in some countries the temperature
goes below 0 Celsius during winter. In this case, the SCK would not be able
to transmit any data to the platform.

However, the RN131 module has some characteristics that make it inter-
esting for its use within the SCK:

• Implements a full on board TCP/IP stack and therefore no external
drivers are required. This simplifies the hardware of the SCK.

• It can use both verbose (ASCII) commands as well as UART and SPI
communication.

• Supports both the softAP and infrastructure network modes.

• It has auto-sleep and auto-wake up modes. This is specially important
for the SCK, in order to save energy.

• Supports WEP/WPA/WPA2 authentication schemes.

In conclusion, this WiFi module in versatile, but the range of working
temperatures and the power consumption make it a bad candidate for its use
within the SCK.

5 Engineering tasks in the official firmware

One of the main objectives of this first part of the project is to improve the
current firmware of the SCK in order to correct bugs and add new function-
alities. Note that the official firmware code from SmartCitizen uses about
27Kb out of the available 28Kb of the microcontroller and therefore there
is not much room to add new features. However, it was possible to add a
new BIST15 mode (see Section 5.1) by removing some dead (unused) code
and reorganizing in order to avoid duplicated code and creating functions
for common operations. Also, the code was analyzed with an automated lint
tool to detect and correct potential problems and improve the firmware code.

The development model used is close to Continuous Integration (CI) [14],
with frequent commits in the master branch and continuous refactoring.
However, note that one of the requirements of CI is that the source code
is compiled automatically on the development server to check that it com-
piles correctly and passes all unit test. In this project the source code is
not compiled and checked automatically on a server, but the new firmware
implements a BIST unit test that checks that all sensors work, that the SCK

15Built-in Self Test
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is able to read them correctly, and that the overall running cycle of the SCK
works well. Also, several commits are performed into the master branch of
the forked SmartCitizen project and pull requests are proposed to integrate
the improvements into the upstream.

The official SmartCitizen project is stored in GitHub, at
https://github.com/fablabbcn/Smart-Citizen-Kit

This project was forked in my personal GitHub account, at
https://github.com/mcolom/Smart-Citizen-Kit

The workflow for the development is the following:

1. The official SmartCitizen project was forked from GitHub and a derived
project created.

2. A local copy of the forked project was stored in my computer.

3. The forked source code is modified (new functionalities, bug correction,
documentation, etc).

4. When needed, a push of the local master branch is performed into the
remote master branch in GitHub.

5. It may happen that while I contribute to the forked project, the engi-
neers of SmartCitizen and collaborators push their own changes in the
official repository. In this case I resynchronize my forked project by
merging my code with the upstream (the official project in GitHub).

6. I send push requests from my forked GitHub project to the official
project, in order to integrate my contributions. The SmartCitizen
team studies my changes and they are integrated into the development
branch if accepted. Later, their master branch is merged with the
development branch to integrate the changes definitively.

Figure 12 shows the commits and merges of all contributors to the SmartCi-
tizen project from different forks. Note that my forked project (user mcolom,
black line) is several commits ahead of the official project because my contri-
butions are not integrated yet. See also that my forked project was merged
twice with the official project (blue line).

Section 5.1 discusses the new BIST mode that was added to the SCK,
and Section 5.2 explains in details all the contributions made to the SCK
firmware, other improvements, and recommendations for further develop-
ment.

36



Figure 12: Commits and merges of all contributors in the forked SmartCitizen
project. The two arrows that go from the official project (blue line) to the
forked project (black line) are the merges with the upstream. Image from
the GitHub website.

5.1 Built-in Self Test (BIST)

One of the contributions of this project to the official SCK firmware has been
the addition of a new test mode that allows to check if the hardware of the
SCK works correctly. It can be used also as a unit-test to check if the SCK
still works correctly after modification of its firmware.

This kind of test is known as Built-in Self Test (BIST) since the idea
is that the same device that implements the BIST is able to check itself
when configured in test mode [7]. In the case of the SCK, the test checks all
ambient sensors and the overall communication with the SCK.

Since only 1Kb of free EEPROM memory is available after programming
the microcontroller with the official firmware, it was not possible in principle
to add much more code. The solution that I found was to use a macro of the
C++ preprocessor to control if the firmware should include the code of the
BIST or not.

If TESTMODE is defined, the C++ preprocessor adds the corresponding
code to execute the BIST check when the SCK is rebooted. This constant
can be activated by passing it as a compiler option, or adding it into file
Constants.h.

void setup() {

ambient_.begin();
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#ifndef TESTMODE

ambient_.ini();

#endif

#ifdef TESTMODE

#if F_CPU == 8000000

SCKTestSuite test_suite;

while (true) {

test_suite.run_all_tests();

Serial.println("\n*** Repeating test suite in 30s...\n");

delay(30*1000); // ms

}

#else

Serial.println("***TEST MODE NOT AVAILABLE FOR THIS CPU");

#endif

#endif

}

If the SCK is configured in test mode it skips some initializations (it
does not call ambient .ini()) that are not needed for the test (for example,
activating the WiFi or configuring some timers). Also, it checks for the CPU
type (if F CPU is equal to 8000000 it means that it is ATMega32U4). The
CPU check is performed because I only had a particular SCK board and
it does not make sense to write code for other kind of SCK versions that I
can not actually test without having the hardware physically. In case the
SCK has a different hardware, it simply shows an error message an stops
execution.

Class SCKTestSuite encapsulates the list of all possible tests. It has a
public function run all tests() that run all known tests. This function
executes each test and prints the result (passed/failed) using the serial line.
A final summary is also printed at the end. The test suite is repeated after
30 seconds. Note that this can be considered a unit-test of the sensors.

From the point of view of the class design, all tests are subclasses of a com-
mon SCKTestBase base class. The idea of this design is that SCKTestSuite

contains a list of tests without knowing their particular type, so it can execute
a known method execute() of each object and obtain the result, regardless
the concrete type. In object oriented design, this way of creating objects and
referring them by the base class type is known as the abstract factory pattern
[15].
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The test base class SCKTestBase is a pure abstract C++ class, which
means that it contains abstract virtual methods and therefore it can not be
instantiated directly. Each of the actual tests is a subclass of SCKTestBase
which implements the virtual abstract method read sensor(). This method
reads the sensor (which sensor depends on each particular test) and return
the obtained value as a float number.

The workflow is the following:

1. Object test suite executes run all tests().

2. Method run all tests() obtains a list of all possible test, each of
generic type SCKTestBase.

3. Each test is instantiated, but referred with the base type SCKTestBase

(abstract factory pattern).

4. For each test, function execute is invoked. This function returns two
values. One with the float value obtained from the sensor and a boolean
flag indicating if it was possible to read the sensor.

5. If the obtained value is within the valid range for that sensor, the test is
passed. If execute returned false or the read of the sensor failed, the
test is failed. Note that execute invokes function read sensor which
is pure abstract in the base class. Therefore, its behavior is defined by
the concrete subclass.

Figure 13 shows the corresponding UML class diagram of the BIST design.
Six different tests are performed for the ambient sensors:

• Light test

• Noise test

• CO level test

• NO2 level test

• Temperature test

• Humidity test

I considered that it was important to add a BIST test to the SCK, since
it is likely that some SCKs get damaged (specially if used outdoors) and
their users had no way to check if the sensors or the hardware were working
correctly. Also, this BIST test can be used as a test-unit to check that the
SCK is able to read all sensors correctly after any firmware modification (i.e.
continuous refactoring).
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Figure 13: UML class diagram of the classes involved in the new SCK BIST.
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5.2 Contributions to the SCK firmware

My contributions to the official SCK firmware are documented in this section.
Commit: 5c4b238f91c59479ece8242cb0e21f8c4665fad5
Date: Sat Aug 9 18:47:31 2014 +0200

• In this commit a first problem in the firmware code was identified: all
files should start with the license, as requested by the GPL license16,
but most of the sources lack this header. It was added.

• The firmware had a set apikey verbose command to set the platform
API key, but it lacked any command to set it. Actually the system is
able to work since the API key is set by a browser plugin that is able
to communicate with the SCK (or any Arduino-compatible device) via
USB. However, it seems that it is better to provide a command to set
the API key and let the firmware deal with the details on how to do
it, instead of giving the browser plugin the addresses that it should
write into to set the API key. With this new function, it is possible to
encapsulate this functionality and making private the implementation
details.

commit 627db6ae598a4f1d1ea2afff0dd29c6400798275

Date: Sat Aug 9 18:57:49 2014 +0200

• Variables val and upSpeed were moved to private scope in class AccumulatorFilter.
Before this change, it was possible to modify these variables from out-
side the class. But they should be read-only and accessible only from
read-only getters.

commit 0176046eda8f3d2330f23a8304143041a45fbefd

Date: Sun Aug 10 00:26:49 2014 +0200

In file SCKAmbient.cpp the construction

if (report == 1) Serial.println(F("Wifly Updated."));

else if (report == 2) Serial.println(F("Update Fail."));

else if (report == 0) Serial.println(F("WiFly up to date."));

else if (report == -1) Serial.println(F("Error reading the wifi version."));

was changed and now a switch statement is used instead.
Variable byte retry = 0; was moved to a more restricted scope with

less visibility.
Construction

16The SCK is indeed under the GPL license: https://github.com/fablabbcn/

Smart-Citizen-Kit/blob/master/LICENSE.txt
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if (temp>RES) data = RES;

else if (temp<0) data=0;

else data = temp;

was changed to the shorter equivalent comparison:

if (data > RES) data = RES;

else

if (data < 0) data = 0;

In function void SCKAmbient::writeRL(byte device, long resistor)

variable data is initialized to zero, but just after that it is rewritten with an-
other value. This dummy initialization was removed and the new code now
is simply int data (int)(resistor/kr1). The same problem happened in
function SCKAmbient::getMICS with variable DATA.

The code

if (Rs < 2000) writeRL(device, 2000);

else writeRL(device, Rs);

was written in a compact form that avoids repeating code:

writeRL(device, Rs < 2000 ? 2000 : Rs);

In this part of the code the second comparison is useless if the first com-
parison is successful.

if (temp>1000) temp=1000;

if (temp<0) temp=0;

Therefore, an else statement was added in between.
Changed construction

if (nets_temp == 0) pos = 0;

else pos = nets_temp - 1;

by this much more compact form: pos = (nets temp == 0 ? 0 : nets temp

- 1).
commit 7c34b83c318d727e84cb9bcf879ca10a094d8d9e

Date: Sun Aug 10 16:19:36 2014 +0200

It was detected that the code that handles the I2C communication had
many duplicated code, because the operations needed to start I2C trans-
actions and to read/write data from the sensors are very similar for each
sensor. Also, some procedures also produced duplicated code, as for example
the code to wait until the I2C bus is available or a certain pin has toggled
its logical value.

In order to prevent code duplicity, the following functions were created
in class SCKAmbient and called when needed:
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• static void i2c transaction(int device, int data, int num);

and static void i2c transaction(int device, int data) to start
an I2C transactions.

• static void i2c transaction reg val(int device, int address,

int val); to start an I2C transaction and read a single byte from the
register of the specified device. This is a procedure that is executed
many times and therefore it is convenient to isolate it in a common
function.

• static boolean wait wire available(int timeout ms); to wait un-
til the I2C bus is available for reading/writing.

• static boolean wait pin change(int pin, int current value); waits
until a certain pin has changed its logical value given its current value.

commit e1227e230388dbdf88037a45ae5cbbea971bbbea

Date: Mon Aug 11 13:02:24 2014 +0200

In the original code, in SCKAmbient.cpp each time it was needed to access
the base board, the server communication routines, or the ambient routines,
the following objects were created:

SCKBase base_;

SCKServer server_;

SCKAmbient ambient_;

However, each of this declarations creates a whole new instance of the
object, which in reality is not needed. In order to avoid creating new objects
each time, in the revised firmware the objects are created just once at the
beginning and they are accessed as static objects instead. This saves time
(since the objects do not need to be constructed again) and memory (since
the objects are created once and they are static).

commit f25151d4681051de374d27cb37cb54859562cce1

Date: Mon Aug 11 13:56:24 2014 +0200

This commit is simply a refactoring. The new code about I2C transac-
tions was move to SCKBase.cpp from SCKAmbient.cpp, since it is actually
common code (thus, it should belong to SCKBase), and not ambient related.

commit f126b70d003a088fef2c7cbd999cf87375ca8b2b

Date: Mon Aug 11 20:39:20 2014 +0200

In order to prevent code duplicity, three functions were created:

• readByte to read a single byte from the internal CPU EEPROM or
the external EEPROM.
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• writeByte to write a single byte from the internal CPU EEPROM or
the external EEPROM.

• static void i2c write many(int device, byte data[], int num);

to start an I2C transaction and write many bytes to the specified reg-
ister of a device given its I2C address.

commit 66bfebb3daecdaf9f86cb9396edde1e81979acd8

Date: Sat Nov 1 20:11:07 2014 +0100

A .gitignore file was added to the root of the project tree in the git
repository. The reason is that file Constants.h contains the WiFi password
hardcoded. Therefore, it might happen that accidentally some users commit-
ted and pushed this files to the repository, exposing private data. In order
to avoid this, a .gitignore file was added with instruction to avoid tracking
this particular file. Of course, changes to this file can be done using the web
interface of GitHub and committing it afterwards.

commit c11e8eb5e5faef4946f3ed8464e13d4347a7f90e

Date: Sun Nov 2 15:32:40 2014 +0100

In this commit, the BIST test was pushed to the forked repository. Sec-
tion 5.1 describes in detail this new feature.

commit 22aaaff9bc49fdc1875ad2809f28dc9813bb12b7

Date: Sun Nov 2 18:51:24 2014 +0100

The official code of the firmware lacked of any special notation to generate
automated documentation. It is very important to use tools to document the
source code structure, because it allows:

• To generate automatically detailed documentation.

• The input and output of any function are clear.

• It is possible to generate UML diagrams of the current architecture of
the code automatically, in any moment.

• The documentation is always updated.

• Some IDEs are able to interpret the automatic documentation nota-
tion and to improve accordingly their edition capabilities (i.e.: code
autocompletion, grouping functions, give class metainformation, etc.)

In this commit, all functions were added Doxygen17 comments in order to
be able to generate automated documentation and class diagrams afterwards.

For example,

17http://www.doxygen.org
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/**

* @brief Reads the resistance of a device (ohms)

* @param device : address of the device

* @return Resistance of the device (ohms)

**/

float readRs(byte device);

Note that the lack of documentation (even automated documentation)
may make fail any project. For the SmartCitizen project, it is strongly
encouraged to keep using Doxygen (or any other alternative) to document
the code.

commit 53d11f17842045a4c100f5c0d1bbfc3f989f93c0

Date: Thu Nov 27 20:48:39 2014 +0100

It was detected that function readCharge() to obtain the remaining level
of battery was not used in the code. It seems that this function was replaced
by getBattery (see Section 3.3.5) and readCharge() remained as dead code.

Removing dead code is specially important for two reason:

• It makes the code unclear about what it is doing. Without knowing
that a function is in reality dead code, it is difficult to understand why
there are two different functions for the same feature.

• The unused function occupies EEPROM memory. This is an important
problem in the SCK, since the official firmware only leaves 1Kb free in
the microcontroller internal memory.

commit d86862db72edc36581963e77dde04b28042e011d

Date: Thu Nov 27 20:51:05 2014 +0100

Constant MCP3 (the value of the adjustable resistance used to mea-
sure the remaining battery level) was added to file Constants.h. Before
this change, this constant was declared in SCKAmbient.cpp. This did not
make sense, since the other MCP1 and MCP2 definitions were already in
Constants.h.

Apart of these changes, there were many other commits that corrected
minor bugs in the code, improved some inefficient structures, and corrected
some typos (for example, the word voltage written in Catalan as voltatge, or
the word reads being written in Spanish as lecturas).

Some of the problems could have been detected by some automatic lint
tool. These tools analyze the source code and print a report that indicates
which parts of the code may be improved or have potential problems.

For the SCK code I used the checkcpp tools, and its report was the
following (only the relevant parts are shown):
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cppcheck --enable=all .

Checking SCKAmbient.cpp...

[SCKAmbient.cpp:555]: (warning) Comparison of a boolean with an integer.

[SCKAmbient.cpp:852] -> [SCKAmbient.cpp:850]: (style) Found duplicate

branches for ’if’ and ’else’.

[SCKAmbient.cpp:920]: (style) The scope of ’pos’ can be

reduced.

[SCKAmbient.cpp:736] -> [SCKAmbient.cpp:740]: (performance) Variable

’ok_read’ is reassigned a value before the old one has been used.

[SCKAmbient.cpp:852] -> [SCKAmbient.cpp:845]: (style) Found duplicate

branches for ’if’ and ’else’.

[SCKAmbient.cpp:506]: (style) The scope of ’temp_x’ can be reduced.

[SCKAmbient.cpp:507]: (style) The scope of ’temp_y’ can be reduced.

[SCKAmbient.cpp:508]: (style) The scope of ’temp_z’ can be reduced.

[SCKBase.cpp:443]: (style) The scope of ’byteRead’ can be reduced.

[SCKBase.cpp:445]: (style) The scope of ’timeOutTarget’ can be reduced.

[SCKBase.cpp:581]: (style) The scope of ’auth’ can be reduced.

[SCKBase.cpp:582]: (style) The scope of ’ssid’ can be reduced.

[SCKBase.cpp:583]: (style) The scope of ’pass’ can be reduced.

[SCKBase.cpp:584]: (style) The scope of ’antenna’ can be reduced.

[SCKBase.cpp:590]: (warning) String literal compared with

variable ’auth’. Did you intend to use strcmp() instead?

[SCKServer.cpp:263]: (warning) Redundant assignment of ’cycles’

to itself.

[SCKServer.cpp:207]: (warning) Assignment of function parameter has no

effect outside the function.

All these problems has been solved in the forked project. It is strongly
recommended that the SmartCitizen team executes checkcpp or any other
lint tool to check regularly the code. It avoids introducing bugs that are
difficult to detect afterwards.

6 Conclusions

The SCK is using low-power consumption sensors, which is needed since it
is powered up with batteries. However, the WiFly module can drain about
200mA according to the official datasheet. It is the only component of the
SCK that can be considered non low-power, and it will be changed by a
device with better energy performance in the next versions of the hardware
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of the SCK. In fact, the second part of this project is about writing the
firmware of the new WiFi module, from scratch.

As discussed in Section 3.3.3, the gas sensors have a very important prob-
lem that need to be addressed as soon as possible in next versions of the SCK:
after a few months the calibration of the sensors is no longer valid and they
need to be re-calibrated using laboratory instruments. Of course, this kind
of equipment is out of reach for most of the users. If the sensors are not cal-
ibrated they give totally incorrect results, which is absolutely unacceptable
for the reliability of the SCK. If the calibration problem of the gas sensor can
not be solved, in my opinion they should not be used in the sensor board.

It was added a BIST mode to the test. The BIST is a classic test that
many devices (specially electronic chips) perform to find any hardware de-
fects. The BIST that has been implemented in the SCK is not as sophis-
ticated as the kind of tests performed inside some microchips, but is able
to detect malfunctions of the sensors and buses. The BIST also implements
unit-testing.

It was possible to improve the official firmware, as detailed in Section
5.2, as bug corrections, memory saving with static objects, moving variables
to private or lower scope, creating functions to avoid duplicated code, etc.
The cppcheck lint tool was used to obtain an automatic report of potential
problems, which were solved. The refactoring of the firmware will go on
during the second part of the project, since it is a continuous process.
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Part II

Development of Firmware for
the New RTX4100 Low-Power
WiFi Module
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7 Introduction

The SCK is battery-powered and therefore it needs that all its components
(sensors, CPU, and other chips) have a low current consumption. As ex-
plained in Sections 3 and 4, all sensors in the production SCK are low-power,
with the exception of the RN131 WiFi module.

It is therefore necessary to change the RN131 WiFi module for a different
chip that exhibits a better power performance in the new versions of the
SCK.

8 Objectives

The objectives of this second part of the project are:

• Analyze and document the hardware of the RTX4100 WiFi module
(Section 9) and the CoLa application model (Section 10).

• Do a requirement analysis of the needs of the new WiFi layer (Section
11.1) and define a new API. This new API does not need to maintain
compatibility with the previous versions of the WiFi API or previous
versions of the SCK, since the hardware of the new SCK boards is
completely different.

• Define the software interface of the new WiFi API.

• Write the firmware corresponding to the new API, inside the RTX CoLa
application framework.

• Define a protocol to communicate the RTX4100 with the main SCK
board using SPI (see Section 11.3). Previous versions of the SCK used
the RN131 WiFi module, which communicates with the main board of
the SCK with verbose ASCII commands. The SmartCitizen team want
to change verbose ASCII communication with binary commands send
via the SPI protocol.

• Connect the RTX4100 WiFi module with an external board (an Ar-
duino Leonardo or a Raspberry Pi B board) in order that the external
board sends SPI commands to the RTX4100 to test the new firmware.
This implies writing a test program in the external board. See Section
11.3 for more details.
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• Communicate with the SmartCitizen team (in particular, with Guillem
Camprodon) and the RTX helpdesk in case additional technical support
is needed during firmware development.

9 RTX4100 hardware description

In order to develop firmware for the RTX4100, it is convenient to use a devel-
opment board to be able to transfer the compiled firmware to the RTX4100
and to debug the uploaded applications. Figure 14 shows the development
board that is used in this project, known as the Wireless Sensor Application
Board docking station. It has an USB connector to communicate the board
with the PC, an FTDI 2232D [16] chip that implements an USB to serial
converter (UART18), and two connectors to plug the RTX19 WiFi module
with its two AAA-type batteries. The image shows the RTX WiFi module
with the batteries already plugging into the WSAB.

The WSAB docking station is a 86 × 86mm development board provides
an easy way to code the RTX4100. Once it is connected to the PC using the
USB cable (mini-USB connector), it provides two virtual serial ports20. RTX
provides some command line and GUI based applications which communicate
with the WSAB docking station and allow to update the firmware of the
RTX4100 easily.

It contains the following elements:

• A mini-USB connector to communicate the WSAB docking station with
the PC, providing two virtual serial ports.

• Two status LEDs that blink when each of the serial ports are accessed.

• A connector for the WiFi Sensor Application Board (WSAB), the ac-
tual Wi-Fi module that will be installed in the SmartCitizen boards.

• A 40 pin expansion connector, that can be used to for additional de-
bugging purposes. They are connected to the I/O ports of the WSAB
microcontroller.

• Boot button: used for firmware updates. However, for the kind of
project used in this project (a CoLa application, see Section 10 for
details) this button is not needed.

18Universal Asynchronous Receiver-Transmitter.
19http://www.rtx.dk/
20Two COM ports in Windows system, and devices /dev/ttyUSB0 and /dev/ttyUSB1 in

GNU/Linux systems.
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Figure 14: The Wireless Sensor Application Board docking station used to
develop and test the firmware. It has an USB connector to communicate
the board with the PC, an FTDI chip that implements an USB to serial
converter (UART), and two connectors to plug the RTX WiFi module with
its batteries. The image shows the RTX WiFi module with the batteries
already plugging into the WSAB.
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Figure 15: The low-power RTX4100 WiFi Sensor Application Board, also
known as WSAB.

• A RTX Unity-II debug connector, a debugging board. It is possible to
extend the WSAB docking station with a RTX2040 Unity-II debugger,
but this piece of hardware is not used in this project.

The RTX4100 unit (also known as the WSAB) is the WiFi module that
will be used in the SmartCitizen boards. It combines in a single board a
Qualcomm Atheros AR4100 WiFi SIP chip (with built-in antenna) [17], an
Energy Micro EFM32G230 microcontroller [18], 24Kb of EEPROM memory,
and 3Kb of RAM memory available for the applications. Figure 15 shows
the RTX4100.

Since the WiFi RTX4100 module has its own microcontroller unit, it can
work standalone without needing to be embedded inside another system. In
the case of SmartCitizen boards this has following advantages:

• The EFM32 microcontroller in the SmartCitizen board does not need
to perform any operations which are naturally related to WiFi control.
This isolates well the responsibility of each part of the hardware in the
system architecture.

• It improves the concurrency of the system, since the EFM32 micro-
controller can do other kind of operations at the same time the main
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Figure 16: The RTX4100 module (behind, not visible) powered up with two
AAA-type batteries. See Figure 17 to see the circuitry behind.

microcontroller in the base board performs different tasks. For ex-
ample, the EFM32 microcontroller can take care of maintain a TCP
connection while the main microcontroller in the base board builds a
JSON request.

• It is more adequate to use the EFM32 microcontroller, since the WiFi
operations are less CPU-cycle demanding that the operations needed in
the SmartCitizen base board. Using the dedicated low-power EFM32
microcontroller to manage the WiFi hardware optimizes the energy
consumption of the complete system.

Figure 16 shows the RTX4100 working with two AAA-type batteries as
power source. It is possible to completely detach RTX4100 from the docking
station and to make it work standalone. An example is the ”Nabto” appli-
cation, which reads the environmental temperature and sends this data to
a centralized server 21. Figure 17 shows the same, but seen from a different
point of view.

The key features of the Atheros AR4100 chip are:

• Little electric consumption (85mA typical)

• Very fast sleep to wake-up. This is important for the SmartCitizen
boards, since it makes it possible to activate the WiFi module only
when the system needs to send data to the platform, and leave in
standby mode the rest of the time.

• The libraries include full support for IPv4 and IPv6 stacks

21http://nabto.com/
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Figure 17: The RTX4100 module showing the circuitry. The AAA-type
battery connector is attached. See Figure 16 to see the battery connector
with the two AAA-type batteries plugged in.

• It supports WEP, WPA, and WPA2 encryption standards.

• It can be communicated to other modules with UART, SPI, and I2S
interfaces

• It is small: 18mm × 30mm. For the SmartCitizen boards this is an
advantage, since it makes it possible to keep the complete SmartCitizen
boards small and therefore they can be installed almost everywhere.

On the other hand, the main advantages of the Energy Micro EFM32G230
microcontroller used in the RTX4100 are the following:

• It is fast. Up to 32Mhz ARM Cortex-M3 CPU.

• Up to 128 kB flash and 16kB RAM memory. This is important for the
SmartCitizen boards, since it is possible to save the WiFi configuration
directly on the RTX4100 module instead of using dedicated memory in
the main SmartCitizen board. Also, its 16Kb of RAM enable the mi-
crocontroller to execute simple programs without requiring interaction
with the main SmartCitizen board.

• It has five different energy modes. Since low-power consumption is an
important requirement of the SmartCitizen boards, this is needed. It
consumes 180µA/MHz in normal mode and 45µA/MHz in sleep mode.
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• It implements 16 external interrupts. This means that it is possible for
SmartCitizen boards to get the EFM32 leave the standby mode and
put it back to normal mode when needed. For example, it can wake
up when a timer in the main SmartCitizen fires, wake up, wake up the
Atheros AR4100 WiFi chip, and send the data.

• It implements UART and SPI communication. This is required for
the new SmartCitizen boards, the need to leave the verbose commands
used in previous versions and use SPI.

• Wide temperature range: from -40 to +85 Celsius. This allows SmartC-
itizen boards to operate in extreme environmental conditions.

Therefore, the RTX4100 is a great candidate to be used in SmartCitizen
boards. The main advantage is the low-power electric consumption, and the
possibility of putting the Atheros AR4100 WiFi module in standby mode
and being able to resume operation quickly. Also, it has fully support for the
IP/TCP protocols and the vastly used WEP, WPA, and WPA2 encryption
protocols which are needed by the SmartCitizen boards. On the other hand,
the EFM32 microcontroller is also low-power, implements SPI communica-
tion, and operates in a wide temperature range.

However, the main advantage of the RTX4100 is the low-power consump-
tion. Its maximum consumption is 85mA, much less than the 210mA used by
the RN131, the WiFi module used in the previous version of the SmartCitizen
board (see Section 4).

10 Software architecture

The applications for the RTX4100 do not generally access the hardware di-
rectly, but use an abstraction layer provided by its own multithreaded22 RTX
Operating System (ROS). These applications are known as Co-Located Ap-
plications (CoLa) in the terminology used by RTX.

The vendor (RTX) provides a complete development environment (AmelieSDK)
that allows to

• Compile CoLa applications.

• Upload and install CoLa applications at the RTX4100.

22Note that the ARM Cortex-M3 CPU in the RTX4100 has only one core. Therefore
concurrency is obtained by OS context switching, since it is impossible to obtain real
parallel execution with a single core.
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• Debug CoLa applications using the RTX2040 debugging unit. This
piece of hardware was not provided to develop this project and therefore
is neither documented nor used here. However, its use is recommended
for future developments.

• Use a large set of libraries, including TCP/IP support or SPI commu-
nication, among others.

• Using multithreading.

The CoLa architecture uses external tools, such the ARM development
tools23 to compile the source code, and the protothreads developed by A.
Dunkels et al [19]. The protothreads are like usual threads in a concurrent
system, but optimized to work in systems with very limited memory, as in
the case of ARM microcontrollers.

Of course, it is possible for the developer to remove the CoLa layer from
the RTX4100 and to write code that directly accesses the hardware by re-
programming the platform firmware. However, this would imply rewriting
from scratch much of the code already available in the provided libraries,
managing the system memory, and context switching. Since in general these
features are needed, clearly it is better to simply build the firmware within
the CoLa layer. In this project, the developed firmware is a CoLa application.

The Amelie framework gives an specific tools called CoLa Controller (see
Figure 18) that allows to choose a compiled CoLa application and update
the RTX4100 firmware with it.

Figure 19 shows a diagram of the software architecture of the RTX4100
ROS. The block on the bottom shows the hardware abstraction layer and
ROS API. It provides

• Drivers and hardware abstraction. This way, the CoLa applications do
not need to know the details of the hardware (I2C addresses, or protocol
timing), since the access is done through an API which abstracts the
hardware details.

• NVS (Non-Volatile Storage) management, to access the EEPROM mem-
ory. With the provided API it suffices to give the memory position to
read/write the RTX4100 EEPROM.

• Several APIs for application-level access to WiFi management, DNS,
and HTTP operations.

The block on top shows the components available to a CoLa application:

23http://www.arm.com/products/tools/index.php

56

http://www.arm.com/products/tools/index.php


Figure 18: CoLa controller tool provided by the Amelie framework to upload
CoLa applications to the RTX4100.

Figure 19: Software architecture in the RTX4100. Source: RTX41xx Wi-Fi
Modules, User Guide UG3 Application Development [20].
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• Application Framework (PtApps): it consists on several applications
that run as protothreads and provide useful common functionality. For
example: WiFi power management, status LED control, or thread man-
agement, among other.

• Hardware drivers: software components to access the hardware drivers
in the hardware abstraction layer (see bottom layer).

• APIs for application protocols (for example, serial communication using
the UART, among others) and networking (DHCP, IPv4, IPv6, among
others).

The main thread is referred as the CoLa task, which is in change of
creating a managing the rest of the threads in the application. Once the
CoLa task has created a new thread, there are two ways to communicate the
threads among them:

• Using global variables. This is a valid option, but abusing of global
variables reduces the readability of the source code of the application
and might be the cause of race condition problems which are difficult
to detect and correct.

• Using ROS mails. The mails are simply messages sent by a thread to
an specific recipient. Since they are put in a queue and dispatched by
the CoLa task (with function PtDispatchMail()), this is the preferred
way. For example, a device driver may put a mail message when it
has received data from the network or when a timer has fired. The
main CoLa task protothread (PtMain) creates all protothreads needed
in the firmware application. All threads send their mail messages to a
mail scheduler, which puts each mail message into a queue. The main
thread dispatches the mail messages in the queue, that is, it takes the
message which arrived last and the scheduler sends it to the appropriate
protothread recipient (See the diagram in Figure 20). This mechanism
to put messages in a queue to be dispatched later and sent to the
appropriate recipient is known as the Publish-Subscribe design pattern
[15].

10.1 Persistent data

Most applications need to load and save configuration data in a persistent
storage that allows the data to be recovered after a power-down. The WiFi
firmware which is developed in this project is not an exception, since it
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Figure 20: Mail mechanism used by the ROS protothreads. The main CoLa
task protothread (PtMain) creates all protothreads needed in the firmware
application. All threads send their mail messages to a mail scheduler, which
puts each mail message into a queue. The main thread dispatches the mail
messages in the queue, that is, it takes the message which arrived last and the
scheduler sends it to the appropriate protothread recipient. This mechanism
to put messages in a queue to be dispatched later and sent to the appropriate
recipient is known as the Publish-Subscribe design pattern [15].
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will need to store the password of known WiFi networks, the ESSID of the
preferred network, the number of channel, or if DHCP or static IP is used,
among others.

The RTX4100 ROS offers support to access Non-Volatile Storage (NVS)
to load and save persistent data. In practice, the provided API accesses cer-
tain positions of the 1Kb EEPROM inside the EFM32 microcontroller. The
RTX4100 platform firmware reserves the first 512 bytes for its own use, but
the following bytes are available to CoLa applications. Some of the PtApps
(see Figure 19) store its own data in the last 256 bytes of the EEPROM.
Therefore, it is only save to assume that 256 bytes of NVS are available for
the firmware being developed in this project, just after the 256 bytes reserved
for the RTX4100 platform firmware.

The header file NvsDef.h defines two constants which declare the address
of the beginning of the PtApps data (NVS OFFSET(RtxAppData) and the
initial address of the 256 bytes available available for new CoLa application
NVS OFFSET(Free). The API provides two functions, NvsRead() to read and
NvsWrite() to write values to the NVS area.

For example, this code might be used to write a structure PreferredNetworkSettings
which holds the parameters of the preferred WiFi network:

NvsWrite(NVS_OFFSET(Free),

sizeof(PreferredNetworkSettings),

(rsuint8*)&PreferredNetworkSettings);

The firmware developed in this project will use the “Free” NVS area to
avoid conflicts with the PtApps. The persistent application data is stored in
the app data object of type AppDataType:

typedef struct {

ApInfoType ap_info;

rsuint8 use_dhcp;

ApiSocketAddrType static_address, static_subnet, static_gateway;

} AppDataType;

Where ap info stores the configuration of the WiFi AP24 (wireless net-
work SSID, and encryption details), if DHCP or an static IP address is used,
and the static IP address (if DHCP is not used), the subnet, and gateway.

24Access Point.
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11 The new SmartCitizen WiFi API

11.1 Requirements

Since the firmware being developed in this project will be used in SCK boards
whose hardware is completely different from previous versions of the SmartC-
itizen boards, it is not mandatory to maintain API compatibility with them.

However, there are some minimal requirements that new WiFi API needs
to meet:

• It should provide at least functions to send and receive data over a
TCP/IP stream.

• It should include power-control functions in order to ensure that the
electrical consumption is minimal, since low-power is one of the reasons
to have changed the WiFi module.

• Its protothreads must be managed such a way that the RTX4100 EFM32
microcontroller stays in standby mode most of the time, in order to save
energy.

• It must be easy to test and debug. To achieve it, the API will provide
communication through the UART so the developer can execute com-
mands to test the firmware, without having to necessarily programming
an external unit which communicates with SPI.

• It should be able to receive SPI commands and return status informa-
tion using SPI. The UART communication is only for the developer
convenience and to make debugging easy. See Section 11.3 for more
details on hardware integration.

• It should use a binary communication protocol through SPI, avoiding
verbose commands.

• The source code must be properly documented. It will be used also the
Doxygen tool in order to obtain automated documentation.

11.2 Implementation details

This section describes the API which is exposed by the firmware of the new
WiFi low-power module used in the new version of the SmartCitizen boards.
Only those parts of the code which are significant will be shown here, to
avoid having large listing in the document.
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The source code of the firmware is developed locally using the Amelie
SDK provided by RTX using a development procedure close to Continu-
ous Integration. For this reason, many changes are commits to a local git
repository and also to a remote repository in github. Although only rele-
vant part of the code are show in this section, the complete source code be-
ing developed can be browsed in github at https://github.com/mcolom/

SmartCitizenRTX4100. The source code is licensed under the GPL25 and
therefore it is publicly available.

As explained in Section 11.1, in order to ease the process of develop-
ing and testing the firmware, it has been implemented a simple terminal to
communicate the RTX4100 with the PC. If the terminal is available, the
RTX4100 creates a virtual port (a COM port in Windows or a /dev/ttyUSB

serial device in Linux) which can be opened by any terminal emulator pro-
gram. For example, Figure 21 shows an a session in the terminal, where the
test command (unit test) has been executed.

The main CoLa task is the following:

/**

* @brief Main CoLa task event handler

* @param Mail : protothread mail

**/

void ColaTask(const RosMailType *Mail) {

// Pre-dispatch mail handling

switch (Mail->Primitive) {

case INITTASK:

// Init GPIO PIN used for timing of POWER measurements

POWER_TEST_PIN_INIT;

// Init the Buttons driver

DrvButtonsInit();

// Init the Protothreads lib

PtInit(&PtList);

// Init the LED application

AppLedInit(&PtList);

// Init the WiFi management application

AppWifiInit(&PtList);

25GNU Public License.
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Figure 21: Terminal session with the Putty program, executing the test

command (unit test) using COM4 in a Windows system. Private data (WiFi
SSID and key password) have been hidden.
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// Start the Main protothread

PtStart(&PtList, PtMain, NULL, NULL);

break;

case TERMINATETASK:

RosTaskTerminated(ColaIf->ColaTaskId);

break;

case API_SOCKET_SEND_CFM:

#ifdef USE_LUART_TERMINAL

PRINTLN("API_SOCKET_SEND_CFM (send confirmation)");

if (((ApiSocketSendCfmType *)Mail)->Status == RSS_SUCCESS)

PRINTLN("Send OK");

else

PRINTLN("Send ERROR");

#endif

break;

case APP_EVENT_SOCKET_CLOSED:

#ifdef USE_LUART_TERMINAL

PRINTLN("APP_EVENT_SOCKET_CLOSED");

#endif

TCP_is_connected = false;

break;

case API_SOCKET_CLOSE_IND:

#ifdef USE_LUART_TERMINAL

PRINTLN("API_SOCKET_CLOSE_IND");

#endif

TCP_is_connected = false;

break;

case API_SOCKET_RECEIVE_IND: {

#ifdef USE_LUART_TERMINAL

PRINTLN("API_SOCKET_RECEIVE_IND");

#endif

// Save pointer to TCP allocated buffer.

// The buffer will be freed in Wifi_TCP_receive().

ApiSocketReceiveIndType *socket = (ApiSocketReceiveIndType *)Mail;
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TCP_receive_buffer_ptr = socket->BufferPtr;

TCP_Rx_bufferLength = socket->BufferLength;

// Move data to rx_buffer

TCP_Rx_bufferLength = socket->BufferLength;

if (TCP_Rx_bufferLength >= TX_BUFFER_LENGTH)

TCP_Rx_bufferLength = TX_BUFFER_LENGTH;

memcpy(rx_buffer, socket->BufferPtr, TCP_Rx_bufferLength);

// Activate the flag that indicates that TCP data has been received.

// The buffer is not freed. The data must be read with Wifi_TCP_receive,

// which will read the data and clear the buffer.

TCP_received = true;

break;

}

}

// Dispatch mail to all protothreads started

PtDispatchMail(&PtList, Mail);

}

It does the following:

1. When the INITTASK mail is received (it is sent at the application
initialization), it initializes the protothreads library, and starts the main
protothread. The main protothread listens for commands (from the
LUART or the SPI bus) and executes them.

2. When the TERMINATETASK mail is received (when a CoLa task
is terminated), it notifies ROS in order to finish cleanly. In practice, the
threads created to use the SmartCitizen WiFi will be never finished,
but processing this mail message makes it possible to detect threads
terminating when they should never do. That is, detecting abnormal
thread terminations due to design problems or coding errors.

3. When the APP EVENT SOCKET CLOSED or API SOCKET CLOSE IND
mails are received it means that the currently open TCP connection
has been closed by the server. It updates the TCP is connected flag
to false.

4. When the API SOCKET RECEIVE IND mails is received it means
that new data has arrived to the TCP stream. It copies the arrived
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data to the TCP buffer (rx buffer) and sets the flag TCP received to
true.

The main thread (PtMain) manages the communication with the outside.
It can be configured in two different ways:

• Debug mode

• Production mode

In the debug mode it accepts verbose ASCII commands using the UART.
The RTX4100 is connected using the USB cable with the PC and a serial
terminal is emulated26. The terminal make it easy to query the status of the
system and execute single commands in order to debug the firmware. It can
be activated by leaving the #define USE LUART TERMINAL statement in the
source code.

The terminal does the following:

1. It declares a buffer to the UART terminal commands (buffer) and a
pointer to the last received character (buf ptr).

2. It starts the UART application which allows to send and receive charac-
ters from a virtual serial port: PT SPAWN(Pt, &childPt1, PtDrvLeuartInit(&childPt1,

Mail));

3. It resets the WiFi module: PT SPAWN(Pt, &childPt2, PtAppWifiReset(&childPt2,

Mail));

4. It reads, character by character, a complete command from the UART.
If the command is recognized, it is processed. If not, it simply prints
the Unknown command message and waits for a valid command.

5. It processes special characters, as for example backspaces.

6. It echoes back the characters received, in order to simulate a terminal.

However, when the RTX4100 is used in production mode it only commu-
nicates through SPI (see Section 3.1) and the terminal is not available. It
uses a simple binary protocol with 15 different commands (see Section 12 for
details).

26The FTDI chip is able to emulate a serial port using the USB connection.
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11.3 Hardware integration

One of the requirements of the new WiFi firmware using the RTX4100 (see
Section 11.1) is to avoid using verbose commands (as in previous versions
of the SCK) and to directly use a binary protocol to communicate the main
board of the SCK with the RTX4100.

During the development, it is easier to simple communicate with the
RTX4100 with the UART and the terminal, but in the final version of the
product it is needed that the communication is performed using SPI. The
RTX4100 docking station has several I/O GPIO27 pins which can be con-
nected to external boards (see Figure 14). Some of these pins can be used
for SPI communication.

Communication with the RTX4100 via SPI brings up a new problem:
how to send the SPI commands to the RTX4100. To do it, an external
board must be programmed with some test code which communicates with
the RTX4100 using SPI. There are plenty of boards which can use SPI, as
for example Arduino Leonardo or any Raspberry Pi board.

For this project, the hardware testing and integration will be done using a
Raspberry Pi B board, instead of directly with an Arduino board, for several
reasons:

• It is possible to create a Python program to communicate using SPI. In
the case of the Arduino, changing the program implies reprogramming
the microcontroller EEPROM, which takes much more time.

• Since the Raspberry Pi board runs a complete Linux system it is pos-
sible to open a terminal using SSH and simply modifying the program
which uses RPI using a GNU/Linux console or even a complete graph-
ical environment.

• It is possible to test SPI interactively by using the ipython tools and
the appropriate libraries. In the case of Arduino boards it is still possi-
ble to use the serial terminal, but the interaction is much more limited
compared to a full GNU/Linux Bash terminal.

The Raspberry Pi B has the pins needed for SPI located at pins #19
(MOSI), #21 (MISO), and #23 (SCLK). Of course, the GND pins of both
the RTX4100 and the Raspberry Pi boards must be connected together to
have an unique ground.

The integration procedure consists on connecting the SPI pins of both the
RTX4100 and Raspberry Pi and then executing the Python test program in
the Raspberry Pi.

27General Purpose Input/Output.
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Figure 22: GPIO pins distribution at the Raspberry Pi B. For SPI it uses
pins #19 (MOSI), #21 (MISO), and #23 (SCLK) (red square).

The Python test program will initialize SPI communication and then, for
each possible operation, it will send the appropriate command and analyze
the response. For example, a possible command is to power down the Atheros
AR4100 WiFi chip. Therefore, after sending the power off command, the next
step is to read the power status of the WiFi chip. If the WiFi chip is in power
down mode, then the test has succeeded. Otherwise, it has failed. Note that
what this program does is really close to unit testing, which is one of the
objectives which were established at the beginning of the project.

12 Communication with the upper layer

12.1 Introduction

The firmware which has been developed in this UOC project is fully au-
tonomous in the sense that it does not need the support or any other hard-
ware to perform its WiFi communication tasks. However, to be useful to
an application in an upper layer, it needs to listen for commands and exe-
cute them using some known API. Therefore, it follows a classic master-slave
architecture.

The provided API is application-agnostic, in the sense that is generic
enough to be useful to plenty of different applications, and the SmartCitizen
boards are just one of them. Also, it offers several alternatives for energy
saving, as regulating the power of the transmitted radio signal, the use of
several power-save modes, to suspend and resume the whole RTX4100, and
even the possibility of powering on and off completely the WiFi chip. The
best energy configuration (to suspend or to power off, for example) depends
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on the application and it should be the user upper layer which decides.
For example, if the interval between the transmission of the data to the

SmartCitizen platform is large enough (say, several minutes) the SmartCi-
tizen firmware should use the command to suspend the WiFi chip. If the
interval is extremely low (say, every few seconds) clearly it should not sus-
pend and use a low-power profile using command #12. And if the system is
running out of battery, then it should power off the RTX4100 with command
#11 and store the data in the system EEPROM instead, without transmit-
ting any data with the WiFi connection.

This section provides an explanation of all the SPI commands available
and what is the binary protocol used. For more details, please look at the
implementation in https://github.com/mcolom/SmartCitizenRTX4100.

12.2 Hardware integration

As explained in Section 3.1, the SPI uses four signals to control the commu-
nication: clock (SCLK), Master Output Slave Input (MOSI), Master Input
Slave Output (MISO), and Chip Select (CS)28.

In production mode the communication between the base board (upper
layer) and the RTX4100 is performed using only SPI communication with
the binary protocol given in Section 12.3. The base board always takes the
initiative to start the communication with the RTX4100. Thus, it follows
exactly a master/slave arquitecture, as shown in Figure 23.

To test the slave RTX4100 with the SPI commands, any board able to
communicate through SPI is valid, as for example a Raspberry Pi or most
of the Arduino boards. However, even if the logical connection is trivial
(it suffices to connect both SCLK, MOSI, MISO, and CS pins together in
both the master and slave devices), the electric characteristics of each device
must be taken into account. In the case of the RTX4100, the EFM32G230
microcontroller needs Vcc=3.0v29. The RTX4100 boards is powered with 5v,
so it uses a LDO30 to adapt the 5v to the 3.0v needed by the microcontroller.
However, the GPIO pins of the EFM32 microcontroller are connected directly
to the SPI interface. It means that if a logical signal has a level over 3.0v it
can damage the microcontroller. For example, an Arduino Leonardo boards
uses 5v to signal a logical “1”, which would case damage to the RTX4100.

Nevertheless, an Arduino Leonard board can be used to test the RTX4100
communication using a voltage divider in order to adapt the voltage levels,

28Therefore, it needs 6 wires if we take into account the Vcc and ground pins.
29See section 3.8 in its datasheet http://downloads.energymicro.com/devices/pdf/

d0005_efm32g230_datasheet.pdf
30Low-dropout regulator.
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Figure 23: SPI communication between the base board (upper layer) and the
RTX4100 in production mode. The test the SPI commands, any board able
to communicate through SPI is valid, as for example a Raspberry Pi or most
of the Arduino boards. In red, the Arduino-like ICSP header (see Figure 24).

Figure 24: The ICSP header pins in Arduino boards used for SPI communi-
cation.

or a dedicated integrated circuit (as the LM3940 chip31, for example).
Some Arduino boards (Leonardo, for example) do not have GPIO pins

which can be used for SPI communication, but it is possible to use the ICSP
header for that purpose. Figure 24 shows the ICSP pinout when used for
SPI (except pin 5, which is used to reset the Atmel microcontroller).

The RTX4100 has a driver32 which implements SPI communication in the
following way:

• Slave mode.

31http://www.farnell.com/datasheets/78785.pdf
32In Drivers/DrvSpiSlave.c.
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• 8 bit data frames. Thus, it can not transmit single bits, and the mini-
mum transfer unit is an octet.

• Uses SPI mode 0 (CLKPOL = 0, CLKPHA = 0).

This driver uses the generic GPIO pins of the RTX4100 (port C) to
implement SPI, and sets pin 2 as MOSI, pin 3 as MISO, pin 4 SCLK and
pin 5 as CS.

12.3 SPI commands reference

In production mode, the firmware waits for commands in the SPI channel,
executes them, and return back information using also SPI communication.
The details of the SPI communication protocol used are given in Section 12.3.

The SPI interface allows to communicate the RTX4100 with the outside
using 15 different commands. These commands are documented in this sec-
tion. The command must be always initiated by the upper layer by sending
a byte which identifies the command which must be executed.

The list of commands and the binary protocol is as follows.

Command #1 (get status)
This command is used to poll the status of the RTX4100. It returns a byte,
where each bit has the following meaning:

1. Bit #0 (LSB): 1 if the WiFi chip is associated and connected to the
AP, and 0 otherwise.

2. Bit #1: 1 if the TCP connection has been established, and 0 otherwise.

3. Bit #2: 1 if new data has been received at the TCP stream, and 0
otherwise.

4. Bit #3: 1 if the WiFi chip is suspended, and 0 otherwise.

Command #2 (DNS33 resolve)
It allows to resolve a DNS name. The protocol is as follows:

1. Read the size in bytes of the name to resolve.

2. Read the name to resolve.

3. Resolve the name using the DNS system and return it as a 32 bits
unsigned word.

33Domain Name System.
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Command #3 (IP config)
It configures how the RTX4100 should obtain the IP address (static IP or by
DHCP). If the IP address is static, it configures also the static IP address,
subnet, and gateway. After executing this command, the upper layer can
associate and connect to the AP with command #5.

The configuration is given as a byte stream. If the byte stream is empty
(its size is zero), it assumes that the configuration is stored at the NVS and it
is read from there. If the byte stream is not empty, it is parsed and processed.

Command #4 (TCP start)
It receives the server IP address and TCP port and starts a TCP connection.
This functions is asynchronous exists immediately and the upper layer can
look at the global status (SPI command #1) in order to check when the
connection has been established.

The protocol is:

1. Read 4 bytes (rsuint32) from the SPI channel. This rsuint32 type
represents the IPv4 address of the server.

2. Read 2 bytes (rsuint16) from the SPI channel. This rsuint16 type
represents the TCP port of the server.

3. Start the TCP connection asynchronously.

Command #5 (associate and connect to the AP)
It associates and connects to the AP which was already configured with
command #3. No SPI data transfer is needed in this command. After
executing the command, the upper layer can poll the status of the system in
order to know when the WiFi chip could associate with the AP.

Command #6 (disassociate and disconnect from the AP)
It disassociates and disconnects the WiFi chip from the AP. The WiFi chip
is assumed to have been already associated to an AP by using first command
#5.

Command #7 (setup AP)
It configures the AP which the RTX4100 must associate and connect with.
The configuration is given as a stream of bytes which contain all the informa-
tion needed. If the configuration stream is empty (its size is zero), it means
that the configuration data has been already stored at the NVS and therefore
it should be used. This frees the upper layer to store the configuration and
pass it as an argument to the RTX4100 each time it needs to connect to the
AP. The configuration is only specified once, and the rest of the times it is
simply read from the NVS.
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Command #8 (close TCP connection)
It closes the already established TCP connection.

Command #9 (TCP receive)
When new TCP data arrives, an internal event fires and event handler copies
the new data to the TCP receive buffer (rx buffer). The number of bytes
in the queue is stored at the global variable TCP Rx bufferLength by the
event handler.

When the upper layer wants to read the arrived data it executes this
function. It simply writes TCP Rx bufferLength bytes from rx buffer to
the SPI.

Command #10 (TCP send)
This command is used to send data to the TCP stream. The procedure is as
follows:

1. Read a word of two bytes (rsuint16) with the number of bytes which it
should send to the TCP stream.

2. Read that amount of bytes from the SPI channel. This data is copied
to the tx buffer buffer.

3. Write the read data to the TCP stream.

Command #11 (Wifi chip power on/off)
This is used to power on/off the WiFi chip. Note that if the WiFi chip
is powered off and the powered on, the WiFi chip must be associated and
connected to the AP again, and the IP configuration procedure must be
performed again as well. Normally this should be avoided, since it takes
several seconds.

It is provided only in the case where the SCK is powered by batteries and
the charge is very low. In that case, the SCK can power off the WiFi chip
and store the data in the SD card instead of transmitting it.

This command reads a byte from the upper layer using SPI. If the byte
is equal to 0, it means poweroff. If it is 1, it means poweron.

Note that for a quick suspend and resume the commands which must be
executed are commands #14 and #15, namely.

Command #12 (Wifi set powersave profile)
It configures the WiFi chip powersave profile. This commands read a byte
from the upper layer using SPI, and sets the powersave profile accordingly.
The code is:

• 0: low power
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• 1: medium power

• 2: high power

• 3: maximum power

Command #13 (Wifi set transmit power)
It reads a byte from the SPI and sets the wireless transmission power accord-
ingly. It power level goes from 0 (minimum) to 18 (maximum). Of course, if
the power level is low, the battery current drain is also low, but it shortens
the minimum allowed distance to the AP.

Command #14 (Wifi chip suspend)
This commands puts the Atheros AR4100 WiFi chip is suspend mode and the
EFM32 microcontroller in EM2 (low-power mode) in order to save energy.

When the WiFi is suspended it can neither send nor receive information
using the radio channel, but the energy consumption is minimal. In the case
of SmartCitizen boards the suspend mode is strongly recommended, since
the SCK only needs to transmit information at large time intervals (once per
minute, or even more). It does not make sense to keep the WiFi activated,
since it would be idle most of the time. It must be considered that even if
the WiFi is idle, it needs to use the radio to receive WiFi beacon frames for
synchronization.

If the WiFi chip is suspended for more that approximately 60 seconds
it needs about one second to wake up and be ready for transmission again.
The reason is that the synchrony is lost and therefore it needs to look for at
least one complete beacon frame. Typically, these beacon frames are send
by the AP once per 102.4ms. The tests performed during these project show
that, in practice, it takes from approximately 0.5 to 1.0 seconds to be ready
for transmission after the WiFi chip has been suspended, because it needs
to wake up the WiFi chip, to receive one or more beacon frames. Also, the
RTOS needs to receive the WiFi wakeup event from the queue.

The firmware presented in this project does not only put the Atheros
AR4100 WiFi chip in suspend mode, but also the EFM32 microcontroller
in the RTX4100, in order to save even more energy. There are four energy
modes: EM1, EM2, EM3, and EM4, where EM1 is the full-power mode and
EM4 means that the microcontroller is totally stopped and it can be only
woken up with an external reset signal. It was checked that mode EM3 can
no be used directly with RTX4100, since the board reset when trying to
wakeup. Mode EM2 works well with the proposed firmware and it allows
to wake up the microcontroller by an external interrupt (when SPI data is
received or a timer fires, among other events).
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In any case, the decision to suspend the WiFi chip with this command,
or to simply leave it in a low energy operation mode (with command #12)
depends on the application. For the SmartCitizen boards, the recommended
procedure is the following:

1. Suspend the whole SCK (base and RTX4100, with this command) for
a given time period (for example, one minute or more), to save energy.

2. Resume the RTX4100 operation with command #15.

3. Read the sensors and send the data to the SmartCitizen platform.

4. Go to step 1.

Command #15 (Wifi chip resume)
This command is used to put the suspended (with command #14) Atheros
AR4100 WiFi in normal operation mode. It might take up to a second to
resume, depending on the AP beacon interval, the Atheros chip reactivation,
and the RTOS message handling. This function does not need to make
the EFM32 microcontroller get out of the suspend mode, since this is done
automatically when an external interrupt is detected. When this command is
executed, the EFM32 will automatically get out of the suspend mode because
of activity in the SPI channel.

13 Conclusions

This section presents the conclusions for the second part of the project. The
conclusions of the first part are given in Section 6.

The objective of this second part of the project was to develop firmware
for the RTX RTX4100 low-power WiFi module from scratch in order to use
a WiFi module with an energetic efficiency better than RN131’s, and offer a
complete API to control the WiFi operations up to the transport OSI level
(TCP connections).

The requirements of this API were the following:

1. It should be able to associate and connect to an AP. The configuration
of the AP (SSID, encryption key and others) should be stored at the
RTX4100 NVS.

2. It should allow to configure the low-power powersave modes of the
Atheros AR4100 chip and the power of the signal.

3. It should provide functions for DNS resolution.
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4. It should allow connecting and transmitting data with a TCP socket
asynchronously. This way the upper layer can initiate an operation and
do some other tasks while the RTX4100 is working. Functions to query
the state of the system are provided (for example, to check if the TCP
connection has been established or new TCP data has arrived, among
others).

5. It allows full control of the energy profile. This is specially important
for battery-powered applications, as SmartCitizen SCKs. Functions to
suspend and resume the WiFi chip are provided, as well as functions
to choose different powersave modes, functions to choose the wireless
signal power, and even functions to completely power off the WiFi
chip if needed. When an suspend command is executed, the EFM32
microcontroller is also suspended (energy mode EM2), and not only
the AR4100 WiFi chip. This ensures that the energy consumption is
minimal when the RTX4100 is suspended.

6. The whole firmware should be designed such a way that it saves as
much as energy as possible. To achieve it, it should be event-driven,
without polling loops which consume not required CPU cycles.

7. It should be easy to debug with verbose commands.

8. It should use only non-verbose SPI commands in production units.

9. It should be free-software.

All these requirements have been accomplished with the firmware devel-
oped during this project. The project was finished at the proposed dates and
the cross requirements common to both parts of the project have also been
met:

• Continuous refactoring;

• communication with the persons responsible for the Smart Citizen
project at IAAC34 (Guillem Camprodon and Alex Posada, mainly);

• periodic and frequent unit testing; Follow an approach close to Contin-
uous Integration.

• writing documentation. In particular, automated documentation using
Doxygen.

34Institute for Advanced Architecture of Catalonia.
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About the development of the firmware, in this project the RTX2040
Unity-II debugger unit was not used. It is not absolutely needed, but it
allows to watch the CPU registers, execute instructions step by step, or to
look up and modify values stored in RAM, among others. Using such a
hardware tool would have accelerated up the development of the firmware.
There is not any reason to avoid using it, so next developers are encouraged
to use it.

The RTX4100 board seems to be a very good candidate, given the re-
sults of the evaluation presented in this project. It is really low-power, their
libraries implement the TCP/IP stack, and the ROS can provide multithread-
ing. Also, two different tickets were open at the RTX help desk to ask for
help during the development, and the response was useful and quick. Clearly,
it is a very good candidate to be used in next versions of the SmartCitizen
boards.
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Glossary

ADC: Analog to Digital Converter.
AP: Access Point.
API: Application Programming Interface.
ASCII: American Standard Code for Information Interchange.
BIST: Build-In Self Test.
CI: Continuous Integration.
CO: Carbon Monoxide.
CPU: Central Processing Unit.
CS: Chip Select (SPI signal).
CoLa: Co-Located Application.
DHCP: Dynamic Host Configuration Protocol.
DNS: Domain Name System.
GNU: GNU’s not Unix.
GPIO: General Purpose Input/Output.
GPL: GNU Public License.
I/O: Input/Output.
I2C: Inter-Integrated Circuit.
IAAC: Institute for Advanced Architecture of Catalonia.
IC: Integrated Circuit.
ICSP: In Circuit Serial Programming.
IDE: Integrated Development Environment.
IP: Internet Protocol.
LDO: Low-dropout regulator.
LDR: Light Dependent Resistance.
LSB: Least Significant Bit.
LiPo: Lithium-Polymer.
MIPS: Millions of Instructions Per Second.
MISO: Master Input Slave Output (SPI signal).
MOSI: Master Output Slave Input (SPI signal).
NO2: Nitrogen Dioxide.
NVS: Non-Volatile Storage.
RISC: Reduced Instruction Set Computing.
ROS: RTX Operating System.
RTC: Real Time Clock.
SCK: Smart Citizen Kit.
SCL: Serial Clock Line (I2C signal).
SCLK: Clock (SPI signal).
SDA: Serial Data Line (I2C signal).
SPI: Serial Peripheral Interface.
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SSID: Service Set IDentifier.
TCP: Transmission Control Protocol.
UART: Universal Asynchronous Receiver-Transmitter.
UOC: Universitat Oberta de Catalunya.
USB: Universal Serial Bus.
Vcc: Continuous Current Voltage.
WSAB: WiFi Sensor Application Board.
WiFi: Wireless Fidelity.
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