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1 Summary

This report is the result of my stage at CMLA, co-directed by J.M. Morel and A. Buades.

During this stage several denoising techniques and background theories were studied, spe-

cially the NL-means method.

The report �rst formalizes what is the noise model that is used to treat mathematically

the images, emphasizing the idea that any image acquired with some captor is nothing

more than the realization of a random variable with some distribution. Any raw image

is physically a realization of a random Poisson variable with mean τu(x) and standard

deviation proportional to
√
τu(x), where τ is the exposure time used to obtain the image

with the captor.

After discussing the general neighborhood �lters and de�ning the noise model, the

report addresses the noise estimation problem from a single image. Some experiments are

made over a synthetic test pattern and also over natural images. The so called �method�

noise is also de�ned.

The NL-means original algorithm is presented, and also its signal-dependent version.

The report then shows results for images in which the added noise follows a uniform

Gaussian distribution, which is, or not, signal-dependent. When the image is sub-scaled

(considering the mean of every four pixels), if the noise is uniform, it is reduced by half. The

new proposed NL-means multiscale algorithm is based on this simple fact. The algorithm

is presented and several tests are shown.

To help understanding in detail how the algorithm works and what are the e�ects of

sub-scaling and denoising on every scale, a natural image is contaminated with non-uniform

noise of known parameters and analyzed on three scales.

Finally, new results on images on which the noise is real and not generated by a

software are shown. These images were uploaded by users to the IPOL journal [31] and

represent a good sample of realistic noise.

The method proved to be able to remove noise in such cases, on which the original

NL-means fails even to detect it. This is the case of chemical noise on old photographies

or old movies and the case of non-uniform noise due to the the characteristic of the captor

or the type of application (astronomy, for example).

Many of the existing algorithms expect that the image is a�ected with some particular

and known noise type (for example, Gaussian noise, Uniform noise, Laplace noise, Lorentz
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noise, . . . ). The original NL-means only works with uniform noise, for instance.

Our end objective is to have something like an �image clinic�, in which the type of

noise that has damaged the image is not known a priori, so the image has to be analyzed

and the noise classi�ed and estimated before treating the image. The IPOL journal is a

good tool for this, because researchers from all the world can upload their own pictures

and test the algorithms online by themselves, without specifying the kind of noise they

had, which they often ignore anyway.

The modi�cation that turns NL-means into a multiscale approach is a �rst step, be-

cause now it is able to deal with coloured and signal dependent noise too.

All the images presented on this report are available to the readers of this report on

request. In fact, it is preferable to look at the images on the screen than on the printed

version, which has some compression and printer smoothing.

2 Introduction

The goal of image denoising methods is to recover the original image from a noisy mea-

surement,

v(i) = u(i) + n(i), (1)

where v(i) is the observed value, u(i) is the �true" value and n(i) is the noise perturbation

at a pixel i. The best simple way to model the e�ect of noise on a digital image is to add

a gaussian white noise. In that case, n(i) are i.i.d. gaussian values with zero mean and

variance σ2.

Several methods have been proposed to remove the noise and recover the true image

u. Even though they may be very di�erent in tools it must be emphasized that a wide

class share the same basic remark : denoising is achieved by averaging. This averaging

may be performed locally: the Gaussian smoothing model (Gabor [4]), the anisotropic

�ltering (Perona-Malik [5], Alvarez et al. [6]) and the neighborhood �ltering (Yaroslavsky

[7], Smith et al. [8], Tomasi et al. [9]), by the calculus of variations: the Total Variation

minimization (Rudin-Osher-Fatemi [10]), or in the frequency domain: the empirical Wiener

�lters (Yaroslavsky [7]) and wavelet thresholding methods (Coi�man-Donoho [11, 12]).

Formally we de�ne a denoising method Dh as a decomposition

v = Dhv + n(Dh, v),
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where v is the noisy image and h is a �ltering parameter which usually depends on the

standard deviation of the noise. Ideally, Dhv is smoother than v and n(Dh, v) looks like

the realization of a white noise. The decomposition of an image between a smooth part

and a non smooth or oscillatory part is a current subject of research (for example Osher et

al. [13]). In [14], Y. Meyer studied the suitable functional spaces for this decomposition.

The primary scope of this latter study is not denoising since the oscillatory part contains

both noise and texture.

The denoising methods should not alter the original image u. Now, most denoising

methods degrade or remove the �ne details and texture of u.

In this report, the NL-means algorithm is �rst presented. This algorithm is de�ned

by the simple formula

NL[u](x) =
1

C(x)

∫
Ω
e−

(Ga∗|u(x+.)−u(y+.)|2)(0)
h2 u(y) dy,

where x ∈ Ω, C(x) =
∫

Ω e
− (Ga∗|u(x+.)−u(z+.)|2)(0)

h2 dz is a normalizing constant, Ga is a Gaus-

sian kernel and h acts as a �ltering parameter. This formula amounts to say that the

denoised value at x is a mean of the values of all points whose Gaussian neighborhood

looks like the neighborhood of x. The main di�erence of the NL-means algorithm with

respect to local �lters or frequency domain �lters is the systematic use of all possible self-

predictions the image can provide, in the spirit of [15]. For a more detailed analysis on the

NL-means algorithm and a more complete comparison, see [16].

3 Noise model

Most digital images and movies are obtained by a CCD device. Following [17, 18, 19],

CCD's show three kinds of noise. The �rst one is the shot noise proportional to the square

root of the number of incoming photons in the captors during the exposure time, namely

n0 =

√
Φ

hν
t ·A · η,

where Φ is the light power (W/m2), hν the photon energy (Ws), t the exposure time in

seconds (s), A the pixel area (m2) and η the quantum e�ciency. The other constants being

�xed we can simply retain n0 = c
√

Φ where Φ is the �true image" and C a constant (see

Figure 1).
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Figure 1: Simulated shot noise. Left: original image u. Right: noise image
√
un where n is the

realization of a zero mean white noise with standard deviation σ = 1. The noise in bright parts is

larger than in dark parts, an e�ect which is corrected and sometimes reversed by gamma-correction.

Second, a dark or obscurity noise n1 is due to spurious photons produced by the captor

itself. We can assume the dark noise to be white, additive and with zero mean. The zero

mean property is due to the subtraction of a dark frame from the raw image. The dark

frame is obtained by averaging the obscurity noise over a long period of time.

Third, the read out noise n2 is another electronic additive and signal independent noise.

This noise can be assumed to have zero mean by the subtraction from the raw image of a

bias frame.

Digital images eventually undergo a �gamma" correction, i.e. a nonlinear increasing

contrast change g: �Gamma correction is the name of an internal adjustment made in

the rendering of images through photography, television, and computer imaging. The

adjustment causes the spacing of steps of shade between the brightest and dimmest part

of an image to appear appropriate [19]. Summarizing,

u(i) = g
(

Φ(i) + c
√

Φ(i)n0(i) + n1(i) + n2(i)
)
,

where u(i) is the observed intensity at a pixel i, Φ(i) the �true physical" light intensity

average power sent by the scene to pixel i, c a constant, n0(i), n1(i) and n2(i) three

independent and signal independent white noises. In practice g(s) = sα with 0 < α < 1.

When Φ(i) is large the shot noise
√

Φ(i) dominates n1 and n2 and is dominated by the

signal Φ(i). Thus we can expand u(i) as

u(i) ' g(Φ(i)) + g′(Φ(i))
(
c
√

Φ(i)n0(i) + n1(i) + n2(i)
)

=: g(Φ(i)) + n(i). (2)
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If instead Φ(i) is small with respect to n1(i) + n2(i),

n(i) ' u(i) ' g(n1(i) + n2(i)). (3)

Let us mention a case of particular interest. If g(s) ' s
1
2 , the noise n(i) reads

n(i) '


n0(i) in the bright parts of the image

√
n1(i) + n2(i) in the dark parts of the image

(4)

In all cases the noise is signal dependent but independent at di�erent pixels. Figure 1

displays a simulated shot noise associated to the Lena image. This noise is signal dependent

and much stronger in bright regions than in dark regions. In order to apply many computer

vision algorithms, the noise parameters must be �rst estimated. For the study of these

parameters for the previous real CCD model we refer the reader to [20].

4 General neighborhood �lters

4.1 Local neighborhood �lters

The more primitive neighborhood �lters replace the color of a pixel with an average of

the nearby pixels colors. Thus J(i) is a spatial neighborhood. The �ltered value can be

written as Mρu(x) = 1
πρ2

∫
R2 e

− |x−y|
2

ρ2 u(y) dy, where the parameter ρ is roughly the size

of the spatial neighborhood involved in the �ltering. Now, the closest pixels to i have not

necessarily the same color as i.

The idea is to average neighbor pixels which also have a similar color value. The

�ltered value by this strategy can be written as

NFh,ρ u(x) =
1

C(x)

∫
Bρ(x)

e−
|u(y)−u(x)|2

h2 u(y)dy, (5)

where u(x) is the color at x and NFh,ρ u(x) its denoised version. Only pixels inside Bρ(x)

are averaged, h controls the color similarity and C(x) is the normalization factor. SUSAN

[8] and the bilateral �lter [9] make this process more symmetric by involving a bilateral

Gaussian depending on both space and gray level. This leads to

SNFh,ρ u(x) =
1

C(x)

∫
e
− |x−y|

2

ρ2 e−
|u(y)−u(x)|2

h2 u(y)dy
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another way to avoid the blurring e�ect of the spatial �lteringMρ by a statistical correction

which we are going to use in the sequel. When the Gaussian mean is performed on an

edge, the variance of the performed mean can become larger than the variance of the noise.

This is a clue that the average is not licit. A statistically optimal correction was proposed

by Lee again [21],

LMρu(x) =Mρu(x) +
σ2
x

σ2
x

+ σ2
(u(x)−Mρu(x)),

where

σ2
x

= max(0,
1

πρ2

∫
R2

e
− |x−y|

2

ρ2 (u(y)−Mρu(x))2 dy− σ2)

and σ is the noise standard deviation. The original noisy values are less altered when the

variance of the performed mean dominates the variance of the noise. This happens near

the edges or in textured regions.

The bilateral �lters perform a better denoising than Lee's correction. They maintain

sharp boundaries, since they average pixels belonging to the same region as the reference

pixel. Bilateral �lters fail when the standard deviation of the noise exceeds the edge

contrast.

The mean operation can be replaced by nonlinear operator like the median �lter. The

median �lter [22] chooses the median value, that is, the value which has exactly the same

number of gray level values above and below in a �xed neighborhood. The median �lter

preserves the main boundaries, but it tends to remove the details. This �lter is optimal

for the removal of impulse noise on images and does not blur edges. It is equivalent to an

average of the pixels in a direction orthogonal to the gradient, that is to an anisotropic

di�usion or mean curvature motion [23].

4.2 Non local averaging

The most similar pixels to a given pixel have no reason to be close to it. Think of periodic

patterns, or of the elongated edges which appear in most images. In 1999 Efros and Leung

[15] used non local self-similarities to synthesize textures and to �ll in holes in images. Their

algorithm scans a vast portion of the image in search of all the pixels that resemble the

pixel in restoration. The resemblance is evaluated by comparing a whole window around

each pixel, not just the color of the pixel itself. Applying this idea to neighborhood �lters

leads to a generalized neighborhood �lter called non-local means (or NL-means) [24, 25].

NL-means has a formula quite similar to the sigma-�lter,
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NLu(x) =
1

C(x)

∫
Ω
e−

(Gρ∗|u(x+.)−u(y+.)|2)(0)
h2 u(y) dy, (6)

where Gρ is the Gauss kernel with standard deviation ρ, C(x) is the normalizing factor, h

acts as a �ltering parameter and

(Gρ ∗ |u(x+ .)− u(y+ .)|2)(0) =

∫
R2

Gρ(t)|u(x+ t)− u(y+ t)|2dt.

The formula (6) means that u(x) is replaced by a weighted average of u(y). The weights

are signi�cant only if a Gaussian window around y looks like the corresponding Gaussian

window around x.

One of the limitations of the NL-means algorithm is the removal of highly structured

noise as in jpeg compressed images. The NL-means is able to remove the block artifact

due to compression but at the cost of removing some details as the di�erence between the

compressed and restored images shows.

5 Noise estimation

5.1 Introduction

Most noise estimation methods have in common that the noise standard deviation is com-

puted by measuring the derivative or equivalently the wavelet coe�cient values of the

image, the standard deviation as the median of absolute values of wavelet coe�cients at

the �nest scale.

Olsen [29] and posteriorly Rank et al. [30] proposed to compute the noise standard

deviation by taking a robust estimate on the histogram of sample variances of patches

in the derivative image. In order to minimize the e�ect of edges small windows were

preferred, with 3×3 or 5×5 pixels. The sample variance of small patches or the pointwise

derivatives provide a non robust measure and require a considerable number of samples

with few outliers to guarantee the correct selection of the standard deviation. We observed

that the opposite point of view, that is, the use of larger windows 15× 15 pixels to 21× 21

pixels permits a more robust estimation. However, since larger windows may contain more

edges a much smaller percentile will be preferred to the median, in practice the 1% or the

0.5%.
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Noise in real photograph images is signal dependent. In order to adapt the noise

estimation strategies, the gray level image histogram will be divided adaptively into a

�xed number of bins having all the same number of samples. This is preferable to classical

approaches where the gray range is divided into equal intervals. Such a uniform division

can cause many bins to be almost empty.

Before adding noise to a image, a test image was created for which the noise curve

showed low values. Finally, a signal dependent noise was added to them, with variance

8 + 2u where u was the noiseless gray level.

The uniform and adaptive divisions of the gray level range in a �xed number of 15

bins were compared, and several noise estimation methods were applied to estimate the

noise standard deviation inside each bin. The performance of all methods are compared in

Table 1 showing the average and standard deviation of the errors between the estimated

and original noise curves. The best estimate is obtained by applying the proposed strategy

using the variance of large patches rather than small ones or point derivatives. These

measurements also con�rm that the division of the gray level range into bins with �xed

cardinality is preferable to the �xed length interval division. This experiment con�rms

that a signal dependent noise can be estimated with a high accuracy.

The noise in each channel is estimated independently. Each color range is divided

adaptively into a �xed number of bins taking into account the color channel histogram.

Inside each bin a percentile is used to estimate the standard deviation.

Fig. 3 displays the ground truth estimated curves with this strategy, both in RAW and

JPEG format for two di�erent ISO settings. The ground truth curves are compared with

the ones estimated in the �rst image of the sequence by the proposed single image noise

estimation algorithm. For the RAW case, the single image and ground truth estimated

curves are nearly identical. Fig. 2 shows a lack of red in the RAW image of the calibration

pattern, even if this pattern is actually gray. This e�ect is corrected by the white balance

as observed in the JPEG image.

The ground truth noise curves estimated from the JPEG images do not agree at all with

the classical noise model. This is due to the various image range nonlinear transformations

applied by the camera hardware during the image formation, which modify the nature and

standard deviation of the noise. The ground truth and single image estimated curves in

the JPEG case have a similar shape but a di�erent magnitude. The main new feature is

that the interpolation and low pass �ltering applied to the originally measured values have
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MAD RMAD MVPD MVPD2

e 1.81 2.87 1.58 0.75

std(e) 1.14 2.59 1.06 0.61

a) Uniform gray division

MAD RMAD MVPD MVPD2

e 1.66 1.87 1.36 0.73

std(e) 1.04 1.17 0.90 0.35

b) Adaptive gray division

Table 1: A signal dependent noise with variance 8 + 2u is added to 110 noise free images.

The uniform and adaptive strategies for dividing the gray level range in a �xed number

of 15 bins are compared. For each strategy, the following noise estimation methods in

each bin are compared: median of absolute derivatives (MAD), robust median of absolute

derivatives (RMAD), median of sample variance of patches 3×3 of the derivative image

(MVPD) and 0.005 percentile of sample variance of patches 21×21 of the derivative image

(MVPD2). Are displayed the average and standard deviation of the errors between the

estimated and original noise curves for the 110 images.

strongly altered the high frequency components of the noise.

The �rst step before trying to remove noise or extending the NL-means method to

signal-depending noise, was to estimate the amount of noise added to the image.

To do it, the noise was estimated with the standard procedure [1], that consists on:

1. Compute the mean µ and standard deviation σ for each N ×N block in the image.

N is small (3 or 5, for example).

2. Classify the standard deviations according to their mean.

3. Take the median value of all standard deviations for each mean.

Di�erent authors [2, 3] have proven that taking the image derivative leads to a better

estimation of the noise.

When the variance of all pixels in the image is known, one can draw a histogram of

the noise for every pixel intensity and every color channel. This histogram is called the

noise curve of the image.
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Figure 2: Calibration pattern used for noise ground truth estimation. Left: raw image.

Right: JPEG image. Even if the calibration pattern is nearly gray the raw image looks

blue because the red is less present. This e�ect is corrected by the white balance applied

by the camera image chain leading to the JPEG image.

To compute the noise curves of several images, the original C/C++ source code by A.

Buades was used as a base, but adapted and improved for many of the experiments.

The �rst modi�cation consisted in adding TIFF and JPEG reading and writing support

to the programs, using the libti� and jpeglib libraries. Originally, the programs were only

able to read and write images under the PM format.

In �gure 4 we can see a 1024× 1024 image that contains rough edges but without any

noise.

In �gure 5 we can see the noise curve histogram corresponding to the image without

any noise, computed witn B = 100 bins.

We observe that even when the original image does not contain any added noise, the

noise curve that is recovered is not equal to zero in all its points, as we could expect.

The conclusion is double:

1. This simple method is not robust to the presence of rough edges in the image, because

the variance computed in those blocks that lay over an edge is very high. Not because

of the noise, but due to the variance of the data itself.

2. The noise is part of the image data, and therefore it could be impossible to remove it

without introducing artifacts in the image. In fact, we can consider that any image

u itself is physically a realization of a random Poisson variable with mean τu(x)

and standard deviation proportional to
√
τu(x), where τ is the exposure time used

to obtain the image with some captor. The Poisson noise is pixel dependent and,

according to the Law of Large Numbers, we could �nd out the ideal value of every
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a) RAW images b) JPEG images

Figure 3: Ground truth and single image noise estimates for the RAW and JPEG images

of Fig. 2. The estimated curve by the temporal average and standard deviation coincide

with the one estimated from the �rst image by the proposed single image noise estimation

algorithm. This is not the case for the JPEG images. The ground truth and single image

estimated curves in the JPEG case have a similar shape but a di�erent magnitude. The

interpolation and low pass �ltering applied to the original measured values have altered

the high frequency components of the noise and have correlated its low frequencies. This

means that the noise statistics are no longer computable from a local patch of the image.

The estimation of a noise curve can only be accomplished by computing the temporal

variance in a sequence of images of the same scene.

pixel if we could observe a in�nite or a large number of realizations of the process.

The problem is that we have only one sample per pixel in the image we try to clean.

The noise curve in �gure 5 was obtained using the derivative image. The derivative is

computed like d(x, y) = u(x, y)− u(x+ 1, y) in the original code.

The problem of computing the derivative this way is that only the changes on the

horizontal direction are taken into account, but not any other. There is a privileged

direction, but the amount of noise should not depend on the orientation of the image, but

on its data.

If the image is rotated, that fact should not change the noise curve computed for the

image, but with the original derivation method used it depends strongly on the variations
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Figure 4: Image without any noise.

Figure 5: Noise curve for image 4.
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of the horizontal direction.

In the �gure 6 we consider that same image than in �gure 4, but rotated 90 degrees

clockwise.

Figure 6: Rotated image without any noise.

In the �gure 7 we can see the noise curve computed with that derivative schema.

As we can observe, the noise curves are di�erent, but the images are exactly the same

and only di�er on the 90 degrees rotation.

The noise curves should be exactly the same, so to avoid the dependence on only one

direction, the derivative function was modi�ed to take into account the vertical direction

too.

With the proposed new method, the derivatives are computed on both the horizontal

and vertical directions and the arithmetic mean of both is assigned instead of just the

derivative in the horizontal direction.

Because the derivative in one direction is assumed to keep the variance of the Gaussian

noise, if we consider a new random variable made up by the sum of the derivatives on the

horizontal and vertical directions, with this new random variable it is possible to recover

the noise variance:

Var(X) = σ ∧Var(Y ) = σ ⇒ Var(X+Y
2 ) = 1

4(Var(X) + Var(Y )) = 1
4(σ + σ) = σ

2 .
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Figure 7: Rotated image curve noise.

In �gure 8 we can see the noise curve for the rotated image using the new method.

The noise curve is exactly the same for both the original and rotated images.

Figure 8: Rotated image curve noise (new method).

Because of that, the new derivation scheme was incorporated in the source code of the

programs, and it is the one that is used in all the experiments.

5.2 Experiments with Gaussian noise in synthetic images

In this section we test the algorithm used to generate the noise curves with a synthetic

image in which a noise of known standard deviation is added. The objective of this exper-
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iment is to con�rm that the noise curve matches the known σ in every bin.

The synthetic image consists on 256 blocks of size 100 × 100 pixels each one. Every

one of these blocks has an intensity that varies from 0 to 255. They are ordered randomly.

In �gure 9 we can see the image pattern used in this experiment.

Figure 9: Test pattern image to test the noise curve algorithm.

In �gure 10 we can see the same pattern, but contaminated with the addition of

Gaussian noise with σ = 30.

The test pattern is useful to test the noise curve because it consists in several �at

regions with the same gray level that can be covered with several N × N patches of the

algorithm. Moreover, the transitions or edges between the blocks are soft1, so the computed

variance of every pixel is due mainly because of the noise.

In �gure 11 we can see the computed noise curve for the pattern contaminated with

Gaussian noise of σ = 30. As we can observe, the noise curve is very close to the value

σ = 30 in every bin for every color channel, so the result is correct.

1One gray level between two blocks that are adjacent in the same row, and 16 gray levels for blocks

that are adjacent in di�erent rows.
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Figure 10: Test pattern contaminated with the addition of Gaussian noise of σ = 30.

Figure 11: Noise curve for the noisy (σ = 30) pattern.
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5.2.1 E�ect of the rotation on the noise curve (synthetic test pattern image)

In this section, the noisy test pattern in �gure 10 is rotated and the noise curves of the

rotated and original noisy images are compared. In �gure 12 we can see the rotated test

pattern.

Figure 12: Rotated noisy pattern (σ = 30).

The noise estimated from both images should be the same, and the aim of the experi-

ments of this section is to show that the noise curves computed with the new method are

robust to rotation. It will be shown also that the original method is not.

In �gure 13 we can see the noise curves for the rotated noisy pattern for both the

original method (left) and the new one (right). The results are similar.

5.2.2 E�ect of the rotation on the noise curve (natural image)

The experiments in this section compare the original method noise curve computation with

the new one, with a natural image, instead of a synthetic one.

In �gure 14 we can see the natural image that is used in this experiment, with Gaussian

noise of σ = 3 (left) and a rotated version of the noisy image.

In �gure 15 we can see the noise curves for the original method.
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Figure 13: Noise curves for the rotated pattern with the original method (left) and the

new one (right).

Figure 14: Noisy natural image with σ = 3 (left) and a rotated version (right).

Figure 15: Noise curves computed with the original method. On the right, the rotated

image curve noise.
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Figure 16: Noise curves computed with the new method. On the right, the rotated image

curve noise.

In �gure 16, we can see the noise curves computed with the new method.

In �gure 17 we can see the noise curve of the original natural image, without any added

noise. The image itself contains some noise already.

Figure 17: Original image noise curve (without added noise).

Although both methods give similar curves for the non-rotated and rotated noisy

images, with the new method the curves are more similar between them, that is, more

robust to rotation.

5.3 Method noise

A di�erence between the original image and its �ltered version shows the noise removed

by the algorithm. This procedure has been introduced recently in [24] and this di�erence
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or residue is called method noise. In principle the method noise should look like a noise.

Otherwise, the method noise can be �ltered again and its deterministic part turned back

to the image. Recent denoising methods adopted this recursive strategy to recover image

information lost in method noise [26, 27]. When the standard deviation of the noise is

higher than the feature contrast a visual exploration of the method noise is not reliable.

Image features can be masked in method noise. Thus the evaluation of a denoising method

should not rely on experiments where a white noise with standard deviation larger than 5

has been added to the original. The best way is actually not to add noise at all.

De�nition 1 (method noise) Let u be a (not necessarily noisy) image and Dh a denois-

ing operator depending on h. The method noise of u is the image di�erence

n(Dh, u) = u−Dh(u). (7)

Principle 1 For every denoising algorithm, the method noise must be zero if the image

contains no noise and should be in general an image of independent zero-mean random

variables.

The gaussian �lter method noise highlights all the boundaries and corners of the image.

Averages are performed on a radial neighborhood and therefore do not adapt to the geo-

metrical con�guration of the image. The anisotropic (median, mean curvature equation)

�lter averages pixels in the direction of contours and therefore tends to preserve straight

edges. However, the corners are not well preserved since they move at the speed of their

high curvature. The iteration of the median or the application of the mean curvature

motion for larger times would completely modify the image and even straight edges would

not be preserved. The total variation minimization [10] is praised for maintaining sharp

boundaries. However, most structures are modi�ed and even straight edges are not well

preserved. This fact has received a mathematical proof in [14]. The wavelet threshold-

ing [28] method noise is concentrated on the edges and corners. These structures lead to

coe�cients of large enough value but lower than the threshold and which are erroneously

canceled. The method noise of the soft thresholding is not only based on the small coe�-

cients but also on an attenuation of the large ones, leading to a general alteration of the

original image.

The bilateral �lter preserves the �at zones, but the edges with a low contrast have

been modi�ed. The NL-means method noise is the one which looks the more like a white
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noise. When applying the algorithms to the non noisy image, the removed features are

more noticeable. The corners of the squares can now be seen in the NL-means method

noise. These are the only features with a reduced amount of similar samples, since for

every corner there are only three similar corners in the image.

6 Signal dependent noise in synthetic test pattern

Natural images are obtained by captors that add noise to the image on a non-uniform way.

There's no way to get rid of the noise produced by the operation of the electronic devices

that process the signal. Even if in�nite resolution were possible, the emission of light is

not a continuous process, but the event of emitting a photon by a non-black body can be

modelled as a Poisson random variable.

The standard deviation of the noise added to the image depends on the signal. The

more intensity has the signal locally, the more standard deviation has the added noise.

To show an example of signal dependant noise, we will use the same test pattern

used before (�gure 9), and we will add noise with the command fnoise_var_a�ne pat-

ternNoiseTest.tif noiseDep.tif. This command will produce a new �le noiseDep.tif with

Gaussian noise whose standard deviation depends on the signal. The program adds Gaus-

sian noise of standard deviation a + bx. In this experiment a = 8, b = 2 and x is the

original image.

In �gure 18 we can see the test pattern with signal-dependent noise added.

In �gure 19 we can see the noise curve of the test pattern image with the signal-

dependent noise added.

The evolution of the standard deviation is almost linear with the intensity of the pixels

(compare with �gure 11). To show this fact was the aim of this experiment.

7 The original NL-means algorithm

Given a discrete noisy image v = {v(i) | i ∈ I}, the estimated value NL[v](i), for a pixel

i, is computed as a weighted average of all the pixels in the image,

NL[v](i) =
∑
j∈I

w(i, j)v(j),
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Figure 18: Signal dependent noise with a = 8, b = 2 added to the test pattern.

Figure 19: Curve noise for the signal-dependent noise.
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where the family of weights {w(i, j)}j depend on the similarity between the pixels i and j,

and satisfy the usual conditions 0 ≤ w(i, j) ≤ 1 and
∑

j w(i, j) = 1.

The similarity between two pixels i and j depends on the similarity of the intensity

gray level vectors v(Ni) and v(Nj), where Nk denotes a square neighborhood of �xed size

and centered at a pixel k. This similarity is measured as a decreasing function of the

weighted Euclidean distance, ‖v(Ni) − v(Nj)‖22,a, where a > 0 is the standard deviation

of the Gaussian kernel. The application of the Euclidean distance to the noisy neighbors

raises the following equality

E||v(Ni)− v(Nj)||22,a = ||u(Ni)− u(Nj)||22,a + 2σ2.

This equality shows the robustness of the algorithm since in expectation the Euclidean

distance conserves the order of similarity between pixels.

The pixels with a similar gray level neighborhood to v(Ni) have larger weights in the

average. These weights are de�ned as,

w(i, j) =
1

Z(i)
e−
||v(Ni)−v(Nj)||

2
2,a

h2 ,

where Z(i) is the normalizing constant

Z(i) =
∑
j

e−
||v(Ni)−v(Ni)||

2
2,a

h2

and the parameter h acts as a degree of �ltering. It controls the decay of the exponential

function and therefore the decay of the weights as a function of the Euclidean distances.

The NL-means not only compares the gray level in a single point but the the geomet-

rical con�guration in a whole neighborhood. This fact allows a more robust comparison

than neighborhood �lters.

8 Uniform Gaussian noise in natural images

In this section, we show some results of the NL-means algorithm when denoising natural

images with uniform noise.

The �rst issue that must be solved before adding noise and removing it from the images

is that we need images with the lowest noise level possible.
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To get them, we averaged every four pixels of high resolution and high quality images

to get a new image of half resolution than the original, but in which the noise level is also

half the original. This property holds only if the noise is white (i.i.d. variables). If not, the

noise level may not reduce to 50%. The size of the images was enough to allow multiple

subscales. The last subscale itself presents low values in its noise curve.

On a early approach, it was tried to reduce high-resolution images computing the

mean of every four pixel values to create every pixel in the reduced image. In theory, this

produces a new image whose noise level is half the original one, but only if the noise is

white.

8.1 Adding uniform Gaussian noise

After obtaining images by computing the mean of every four pixels and subscaling as

explained before, their noise curves contain low values and are quite uniform, so they are

adequate for the tests of adding noise.

With the command fnoise it was added uniform Gaussian noise of σ = 2.5.

In �gure 20 we can see the noise curve after adding the noise to the image blossom,

and in �gure 21 the same for image espresso.

Figure 20: Noise curve after adding uniform Gaussian noise with σ = 2.5 to blossom.

As we can see in �gures 20 and 21, the noise estimation is correct, because it is uniform

and with the expected value of σ (2.5).
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Figure 21: Noise curve after adding uniform Gaussian noise with σ = 2.5 to espresso.

8.2 Removing uniform Gaussian noise

The NL-means is an algorithm that has been proven to be very successful to remove noise

from images, but only when the noise distribution is uniform.

In the previous section, that kind of noise was added to the images. Here we will show

the denoised images and their noise curves, once denoised by the NL-means algorithm.

The added noise had σ = 2.5. For the image blossom, the NL-means algorithm esti-

mated σ = 2.364879 and for espresso σ = 2.489400. The estimation of the noise was more

accurate for espresso.

In �gure 22 we can see the denoised versions of blossom and espresso as well their noise

curves. Both noise levels are quite small after the denoising by the NL-means algorith. For

blossom the standard deviation is always below σ = 0.85 (most of the values lie at σ = 0.5

however) and for espresso it is always below 0.60. This is a good result (compare with the

noise levels of the noisy images in �gures 20 and 21).

It is important to note that if the noise is Gaussian and uniform, it should not create

any visible structure on the image. Formally, we have that v = u+ n, where u is the ideal

image, n is the added noise and v the noisy image. A denoising algorithm estimates the

noise from v and the generates a new image u∗ = v − n∗ such as the estimated noise n∗ is

removed. If we subtract v − u∗ we have v − u∗ = v − v + n∗ = n∗, that is, the estimated

noise. This noise is call the method noise.

So, if both the noisy and the denoised images are subtracted, it should be obtained
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Figure 22: Denoised images and their noise curves.

a new image representing the estimated noise, on which it should not be noticeable any

structure.

In �gures 23 and 24 we can see the estimated noise image. Although the NL-means

performed well and most of the noise was removed, it is possible still to notice the borders of

the objects of the original images if looked at. The result is not perfect, but very accurate.

Figure 23: Image of the estimated and removed noise for blossom by NL-means.
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Figure 24: Image of the estimated and removed noise for espresso by NL-means.

9 Adding signal-dependent Gaussian noise

In section 8 it was shown that the NL-means algorithm performed very well when the noise

in the image was of Gaussian distribution and uniform.

The NL-means SD is a variant of the original NL-means that deals with images whose

noise is uniform, but signal-dependent. To achieve it, the algorithm �rst applies a transform

to the image values in order to change their distribution into Gaussian, so the NL-means

algorithm can deal with them. After the denoising process, the inverse transform is applied

to get a clean image.

An useful transform is the Anscombe transform, that changes Poisson distribution into

an approximately Gaussian one. The Anscombe transform is de�ned as A : x→ 2
√
x+ 3

8 ,

although there are valid alternatives as A : x→
√
x+ 1 +

√
x or A : x→ 2

√
x.

In this section we will show that when the image noise is signal-dependent, the NL-

means SD is able to denoise the images if the noise is uniform.

To generate the noisy images the command fnoise_var_a�ne was used to add signal-

dependent Gaussian noise of variance n = a + bu, where a and b are parameters for the

standard deviation and u is the original image.

In �gures 26 and 27 we can see the images blossom and espresso contaminated with

signal-dependent Gaussian noise of variance σ = 5+10u, and their noise curves (up). Also

the denoised images by the NL-means SD algorithm and their noise curves (down).
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Figure 25: Denoised with SD NL-means blossom and espresso (signal-dependent noise)

and their noise curves.

Figure 26: Noisy blossom and its noise curve (up). Denoised with NL-means SD and noise

curve (down).
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Figure 27: Noisy espresso and its noise curve (up). Denoised with NL-means SD and noise

curve (down).

9.0.1 Noise reduction over subscales

There is a important property that holds when the noise added is uniform: the noise

standard deviation reduces to 50% when the noisy image is subscaled to half its size. If

the subscaled image is subscaled again, the noise level also reduces to half. This reductions

continue until the scale is so small that the structures of the image are lost. If the images

are still subscaled after that point, the noise level increases instead of increasing.

To show this property, in �gure 28 we can see on top a noisy version of the blossom

image (2668×1768) with noise of variance σ = 30u, and its noise curve. On the middle, the

�rst subscale (1334×884) and its noise curve. On bottom, the second subscale (667×442)

and its noise curve.

This experiment checks empirically that the property holds when the noise is uniform,

even if signal-dependent.
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Figure 28: Di�erent subscales of noisy image blossom with signal-dependent noise with

variance σ = 30u added and their noise curves.
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10 The new NL-means multiscale algorithm

In this section, a new algorithm based on the NL-means, is presented. As explained before,

the original NL-means is useful when the image contains uniform noise or even when the

noise-is signal dependent.

When the noise is not uniform, the original NL-means algorithm fails to estimate right

the amount of noise and therefore the denoising result is not good, in general.

The objective of my stage at CMLA was not only to study and experiment with noise

algorithms, but also to �nd the way to improve the NL-means algorithm so it was able to

denoise images with non-uniform noise.

As explained and showed in section 9.0.1, the noise variance becomes reduces to 50%

when the image is subscaled by half. That is, if the image size is x × y and the variance

of the noise is σ, then a subscaled x
y ×

y
2 version will contain a noise of variance σ/2. A

subscale is create using the procedure proposed in section 8, i.e. averaging every four pixels

and substituting those four pixels by their mean in the subscaled version.

If the noise is not uniform, there not exist any reason for which the noise should reduce

by half, but is reduced in some quantity that depends on the distribution of the random

variable that models the noise.

To simulate the addition of non uniform noise, it was coded a new tool (fnoise_non_uniform)

that convolves signal-dependent noise with a Gaussian kernel. The standard deviation for

the SD noise (g) and for the Gaussian kernel (h) are speci�ed as parameters. Convolving

the noise with a Gaussian kernel results on a noise with a non-uniform distribution.

In image 29 we added non-uniform noise with g = 30 and h = 1.4. In image 30 we can

see some details in a part of the image, revealing what the noise looks like.

In this case, we can see that convolving the uniform noise with a Gaussian kernel with

that parameters add color spots over the image. The bigger is the standard deviation of

the Gaussian kernel, the bigger are the spots in the spatial scale.

This is the reason why nor NL-means neither NL-means SD are able to denoise images

with non-uniform noise. Even if the patch size in the NL-means algorithm is smaller than

the size of the spot, the algorithm is likely to "clean" the spot (i.e., to remove uniform

noise over it), rather than to remove the spot from the image.

In a multiscale decomposition, the lower scale reduce the size of the noise spots by
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Figure 29: Image with non-uniform noise of σ = 30 and h = 1.4.

Figure 30: Detail of image with non-uniform noise of σ = 30 and h = 1.4.
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half, so this it should be possible to remove those spots in some lower scale.

In this section, a multiscale modi�cation is proposed in order to present a new NL-

means algorithm that is able to deal with non-uniform noise.

The algorithm does the following:

1. Check if at least the image size allows to subscale it three times. I.e., its dimensions

are multiples of 8. If not, black columns or rows are added. This ensures that it will

processed at least three subscales in the image.

2. Create a detail mask for the input image.

3. Consider as many as subscales as possible. Each subscale is made by averaging every

four pixels in the upper scale. If the width or height of a subscale are not multiple

of two, no more subscales are generated.

4. Obtain the details of every scale. We de�ne Z(u) as the inverse operation of the

subscale, that is, quadruplicating every pixel to create a new zoom in ×2 image. If

we denote si as the subscale at level i, the details Di are obtained as Di = si−1− si.
Level 0 is the �rst subscale of the image.

5. For every scale of the image...

6. Denoise current scale with the NL-means SD algorithm.

7. Superscale (quadruplicate pixels) of current scale and add to it the details. If the

current scale is the upper scale (output), then add the details according to the detail

mask.

8. Clean image of previous step with the NL-means SD algorithm.

9. Replace upper scale with image in previous step.

10. ...repeat until all scales have been processed.

The objective of the detail mask is to be able to separate (in the upper scale) noise

from real structures in the noisy image. If a zone is �at, it is more convenient to fetch the

pixels from the lower scale (before superscaling it) because the noise level will be divided

by half on that region. If a zone contains a texture or a border, the details are added to

the output image in order to avoid a pixelated look.
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Using the detail mask improved greatly the results of the multiscale approach, because

many images contain �at zones and edges represent a small (but important) part of the

image structure. The detail mask tries to preserve the details, edges and textures, while

taking data from lower scales in �at zones to reduce the noise level.

The detail mask is computed using a 2×2 patch that is moved over all possible locations

in the input image. The standard deviation of the patch is computed, normalized to be

between 0 and 1 and its value assigned for every location. Once the value of the standard

deviation for all the pixels in the original image is known, it is compared to a threshold to

determine if the pixel is a detail (value over the threshold) or belongs to a �at zone (value

below the threshold).

To determine the threshold, many values are tested. For every value, a mask is com-

puted. If the mask contains more than a 25% of pixels labelled as details, a larger threshold

is tried (it is incremented by 0.01). The value of 25% has been chosen experimentally by

testing various natural images.

To explain the multiscale algorithm, every scale will be analyzed in detail.

To the original image (�gure 31) it was added signal-dependent noise of standard

deviation g = 30, convolved with a Gaussian kernel of h = 1.4. This convolution results in

non-uniform noise. This noise was added to the original image (size 1136× 852).

Figure 31: Original image.

In �gure 32 we can see the noisy image.

In �gure 33 we can see a detail of the noisy image that allows to observe the spots
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Figure 32: Image with non-uniform noise (g = 30, h = 1.4).

caused by the noise.

The size of the image was changed to 1136x856 by the algorithm, in order to process

at least three subscales.

In image 34 we can observe the detail mask computed for this input image. The

algorithm chose the value 0.08 as the threshold. As we can see, this value is adequate for

this input image, because it detects the �at zones (the sky and the facade of the buildings)

and designates as details the borders of the structures.

In image 35 we can see the result of the NL-means SD algorithm when trying to

remove the non-uniform noise form the image, and the noise curve. The noise is still high

noticeable.

In image 36 we can see a detail of the NL-means SD denoising result.

10.1 Scale 2

In �gure 37 we can observe scale 2 (142 × 107) of the original input, its noise curve, the

denoised version zoomed 2X with details added in order to substitute the upper scale, and

the noise curve of the denoised image.

We can observe that the noise level is dramatically reduced on the subscale 2.
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Figure 33: Detail of the noisy image.

Figure 34: Detail mask of the input image.
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Figure 35: NL-means SD denoising result.

Figure 36: Detail of the NL-means SD denoising result.
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Figure 37: Scale 2 (up) and zoomed X2 version denoised (down).

10.2 Scale 1

In �gure 38 we can observe scale 1 (284 × 214) of the original input, its noise curve, the

denoised version zoomed 2X with details added in order to substitute the upper scale, and

the noise curve of the denoised image.

10.3 Scale 0

In �gure 39 we can observe scale 0 (568 × 428) of the original input, its noise curve, the

denoised version zoomed 2X with details added in order to substitute the upper scale, and

the noise curve of the denoised image.

10.4 Upper scale

This scale corresponds to the upper scale, that is the denoised output image with the

details added from the lower scale using the detail mask. In image 40 we can see the

denoising result.

In image 41 we can compare a detail of a zone of the noisy image, the denoise result

using the NL-means SD algoritm and �nally with the NL-means multiscale algorithm.
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Figure 38: Scale 1 (up) and zoomed X2 version denoised (down).

Figure 39: Scale 0 (up) and zoomed X2 version denoised (down).
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Figure 40: NL-means multiscale output.

Figure 41: Noisy image (left), NL-means SD (right) and NL-means multiscale output

details.
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In �gure 42 we can see the method noise of the algorithm. Although some structures

are visible, it is because the detail mask, that prevents that the noise is removed on the

edges to keep the details of the image. We can see that, out of the edges, no structure

is visible and the algorithm has extracted the color spots (the non-uniform noise added)

from the image.

Figure 42: NL-means di�erence image.

11 More results of the NL-means multiscale algorithm with

real noise

In this section more results of the NL-means multiscale algorithm are showed. The following

images are examples of noisy images that users uploaded to the IPOL web page in order

to test NL-means.

11.1 Image "man"

In �gure 43 we can see the input image, the output given by the NL-means SD algorith

and the output by the new NL-mean multiscale algorithm. In �gure 44 the noise curves

for these three images. In �gure 45 the di�erence image and in �gure 46 the detail mask.
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Figure 43: Input image, NL-means SD and NL-means multiscale output for "man".
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Figure 44: Input, NL-means SD and NL-means multiscale output noise curves for "man".

Figure 45: NL-means di�erence image for "man".
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Figure 46: Detail mask for "man".

11.2 Image "war"

In �gure 47 we can see the input image, the output given by the NL-means SD algorith

and the output by the new NL-mean multiscale algorithm. In �gure 48 the noise curves

for these three images. In �gure 49 the di�erence image and in �gure 50 the detail mask.

11.3 Image "factory"

In �gure 51 we can see the input image, the output given by the NL-means SD algorith

and the output by the new NL-mean multiscale algorithm. In �gure 52 the noise curves

for these three images. In �gure 53 the di�erence image and in �gure 54 the detail mask.

11.4 Image "singer"

In �gure 55 we can see the input image, the output given by the NL-means SD algorith

and the output by the new NL-mean multiscale algorithm. In �gure 56 the noise curves

for these three images. In �gure 57 the di�erence image and in �gure 58 the detail mask.

11.5 Image "kitchen"

In �gure 59 we can see the input image, the output given by the NL-means SD algorith

and the output by the new NL-mean multiscale algorithm. In �gure 60 the noise curves

for these three images. In �gure 61 the di�erence image and in �gure 62 the detail mask.
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Figure 47: Input image, NL-means SD and NL-means multiscale output for "war".
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Figure 48: Input, NL-means SD and NL-means multiscale output noise curves for "war".

12 Conclusion

During my stage at CMLA I could explore existing denoising methods and specially the

general neighborhood �lters (local neighborhood �lters and non-local averaging). As a

particular case of the non-local averaging I studied in detail the NL-means [16].

Using as a base the algorithms coded by A. Buades with the C++ language, these

codes were modi�ed to test new improvements of the NL-means denoising.

The �rst modi�cation was to use a multiscale approach. The noise level is reduced by

half if the noise is uniform in a subscale. If the noise is not uniform, a noise reduction is

noticeable, although it may not be divided by two, because it depends on the statistical

distribution of the noise.

The multiscale approach was proven to give great results, both in the noise curves and

by observation by the human eye.

The second modi�cation was the use of a detail mask. This mask helped to split the

image details into real details (edges, textures) and noise. The use of the mask gave very

good results also, especially on the �at regions of the image. Over these zones, the noise

is almost completely removed.

These modi�cations mean an important improvement of the NL-means algorithm, and
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Figure 49: NL-means di�erence image for "war".
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Figure 50: Detail mask for "war".

the next step is its publication on the IPOL journal.
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Figure 51: Input image, NL-means SD and NL-means multiscale output for "factory".
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Figure 52: Input, NL-means SD and NL-means multiscale output noise curves for "factory".

Figure 53: NL-means di�erence image for "factory".

Figure 54: Detail mask for "factory".
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Figure 55: Input image, NL-means SD and NL-means multiscale output for "singer".
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Figure 56: Input, NL-means SD and NL-means multiscale output noise curves for "singer".

Figure 57: NL-means di�erence image for "singer".
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Figure 58: Detail mask for "singer".
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Figure 59: Input image, NL-means SD and NL-means multiscale output for "kitchen".
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Figure 60: Input, NL-means SD and NL-means multiscale output noise curves for

"kitchen".

Figure 61: NL-means di�erence image for "kitchen".
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Figure 62: Detail mask for "kitchen".
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A Appendix. NL-means multiscale pseudocode

Here it follows a pseudocode description for the NL-means multiscale algorithm. The

complete C++ source code is available to the reader by request.

// Subscale image I half size by averaging every 4 pixels.

outImage subScale(I) {

width = width of I

height = height of I

nchannels = number of channels in I

outImage = image of half size than input

// compute new width and new height.

newWidth = width / 2

newHeight = height / 2

for every pixel (x,y) in inputImage and for every channel:

outImage(x, y) = (I(2x,2y) + I(2x+1,2y) + I(2x,2y+1) + I(2x+1,2y+1))/4

}

// Superscale image I double size by quadruplicating every 4 pixels.

output superScale(input) {

width = width of input

height = height of input

nchannels = number of channels in input

outImage = image of double size than input

// compute output

for every pixel (x,y) in inputImage and for every channel:

outImage(x, y) = I(floor(x/2), floor(y/2))

}
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// Computes the standard deviation of the input image using a NxN patch.

output computeStdMask(input, threshold) {

patch = square of NxN

width = width of input

height = height of input

nchannels = number of channels in input

for every pixel (x,y) in inputImage {

1) fill patch with NxN values from input starting at (x,y),

averaging the values from different channels

2) compute the standard deviation of the patch (std)

3) Assign std the output(x,y)

4) Normalize output so SUM(output) = 1

5) Set value 255 to those pixels in output that are over the threshold,

and zero otherwise.

}

}

.

// Get the details substracting the data a low resolution

// image from a high resolution image

details getDetails(highRes, lowRes) {

details = highRes - lowRes

}

// Adds given details to the specified image using a mask

output addDetails(details, image, mask) {

width = width of image

height = height of image

nchannels = number of channels in image
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for every pixel (x,y) in inputImage and for every channel:

if mask(x,y) != 0

output(x,y) = image(x,y) + details(x,y)

else

output(x,y) = image(x,y)

}

}

// Returns the number of pixels labelled as "detail" in the given matrix.

countDetails(I) {

return #pixels P in I for which P != 0

}

// Next number divisible by div

nextDivisible(value, div)

if value is divisible by div, return value,

if not, return next (higher) value divisible by div

}

BEGIN NL-MEANS-MULTISCALE

// 1) Load input

Load input image

// 2) Get size and number of channels in input

width = width of image

height = height of image

nchannels = number of channels in image

// 3) Set initial values for the parameters

patchNx = 2

patchNy = 2

thStd = 0.05
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// 4) Obtain size that allows at least 3 scales

if width or height not divisible by 8 {

width = nextDivisible(width, 8)

height = nextDivisible(height, 8)

enlarge image to the new size

}

stdMask = new image of the same width, height and number of channels

// 5) Look for a threshold that leaves no more than 25% detail pixels

detailPercert = 100

while detailPercert > 25 {

stdMask = computeStdMask(input, patchNx, patchNy, thStd);

detailPercent = (100*countDetails(stdMask)) / (width*height);

thStd = thStd + 0.01;

}

// 6) Denoise lower scales and substitute high scales with then

for every possible scale sub of image (from smallest to biggest size)

// 6.1) Get details of current scale

details[scale] = getDetails(sub[scale-1], sub[scale])

// 6.2) Denoise current scale

Denoise sub[scale] with NL-means_SD and save result into cleanScale

// 6.3) Superscale denoised scale

superCleanScale = superScale(cleanScale)

// 6.4) Add details to superCleanScale only if current scale is the top scale

if current scale is top

superCleanScale = addDetails(details, superCleanScale, stdMask)

// 6.5) Denoise superCleanScale into cleanSuperCleanScale
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Denoise superCleanScale with NL-means_SD and save result into cleanSuperCleanScale

// 6.6) Replace upper scale with cleanSuperCleanScale

if current scale is top scale

Denoise top scale with NL-means_SD and save result to disk

else

sub[scale-1] = cleanSuperCleanScale // Replace upper scale

END NL-MEANS-MULTISCALE
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