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Optimal denoising works at best on raw images (the image formed at the output of the focal plane, at the CCD or
CMOS detector), which display a white signal-dependent noise. The noise model of the raw image is characterized
by a function that given the intensity of a pixel in the noisy image returns the corresponding standard deviation;
the plot of this function is the noise curve. This paper develops a nonparametric approach estimating the noise
curve directly from a single raw image. An extensive cross-validation procedure is described to compare this new
method with state-of-the-art parametric methods and with laboratory calibration methods giving a reliable ground
truth, even for nonlinear detectors. © 2014 Optical Society of America

OCIS codes: (040.1520) CCD, charge-coupled device; (100.2960) Image analysis; (110.4280) Noise in imag-
ing systems; (040.0040) Detectors; (040.3780) Low light level; (100.2980) Image enhancement.
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1. INTRODUCTION
Most denoising methods assume that the noise in the image is
additive, homoscedastic, white, and Gaussian.Homoscedastic

means that the variance of the Gaussian noise is fixed and does
not depend on the pixel position or value. By “white” noise, we
mean that the noise pixel values are independent. We shall
retain this terminology throughout thepaper. Thehomoscedas-
ticity assumption is not realistic. The photon emission by a
body follows a Poisson distribution, which can be approxi-
mated by a Gaussian distribution when the number of photons
is large enough. But the variance of this Gaussian is signal de-
pendent. In the Poisson model [1–7], an image value ~U�x; y� at
pixel �x; y� is a Poisson variable with variance and mean equal
to U�x; y�, where U is the ideal noise-free image. The Poisson
noise has therefore a standard deviation (STD) equal to
�U�x; y��1∕2. Thus, an ideal raw image is a white Poisson noise
whose mean at each pixel is the noiseless value. Note that this
is related to the quantum nature of light and the probability of
emitting a photon, independently of the technology used at the
CFA (CCD, CMOS). This Poisson noise adds up to a thermal
noise and to an electronic noise, which are approximately ad-
ditive and white, making the final noise model not necessarily
Poisson distributed, but still white and signal dependent.

Noise estimation is a necessary preliminary step for most
image processing and computer vision algorithms [8]. Never-
theless, several other denoising methods propose to deal
directly with Poisson noise. Wavelet-based denoising methods
[9,10] propose to adapt the transform threshold to the local
noise level of the Poisson process. Lefkimmiatis et al. [11]
have explored a Bayesian approach, and Deledalle et al.

[12] have adapted the nonlocal means algorithm [13] to Pois-
son noise. These papers assume that no variance stabilizing
transform (VST) transforming the signal-dependent noise into
a nearly homoscedastic noise is accurate enough to transform
the Poisson noise into homoscedastic noise. The advantage of

VSTs is that they permit the application of a classic denoising
algorithm. The VST associated with Poisson noise is often
called Anscombe transform [14], but one can attach a VST
to any signal-dependent noise model [8]. As a matter of fact,
papers on the Anscombe transform [15] (for low count Pois-
son noise) and [16] (for Rician noise) argue that, when com-
bined with suitable forward and inverse variance stabilizing
transformations, algorithms designed for signal independent
Gaussian noise work just as well as ad hoc algorithms for
Poisson noise models. These considerations confirm the
importance of estimating as accurately as possible the noise
curves of raw images, since their accurate knowledge is
required to compute the VST. In most CCDs and CMOS detec-
tors, the variance of the noise at a pixel is approximated
(assuming that all detectors at the CFA are equivalent and
thus neglecting the fixed pattern noise) by a simple linear
model σ2 � A� BU, where U is the expectation of the inten-
sity of this pixel in the noisy image. This model is valid under
the assumption mentioned above of a combination of a
Poisson with a thermal noise. Yet, this assumption holds only
if the signal is not saturated and the photon count large
enough. At the darkest pixels, the Poisson distribution of
the noise cannot be approximated by a Gaussian and it be-
comes a shot noise. In short, the noise variance does not nec-
essarily follow the linear model in the darkest and brightest
image regions. An accurate estimation of the noise at the dark-
est zones is crucial since subsequent processes in the camera
chain (specially, the gamma correction step) are designed to
increase the dynamics in the dark zones. If the noise is not
removed at the raw image stage, it might end up really aug-
mented at the final stage.

Parametric noise estimation methods try to obtain the
parameters that control a noise model (for example, the A
and B parameters of the linear model). Yet, to get a realistic
estimation, they have to take into account the effect of the
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saturation in the darkest and brightest pixels in the final noise
curve. To validate the estimation of a noise estimation
method, its noise curve must be compared to a ground-truth
curve. Such a ground truth for a particular camera and set-
tings can be obtained by taking a series of photographs of
a pattern, which is mostly flat and contains a wide range of
gray levels. The temporal variation of the gray level at a given
pixel gives an estimate of the noise STD associated with this
gray level. However, the series of photographs must be taken
under controlled conditions, to ensure that any variation of
the intensity of a pixel can be only explained by the noise.
In short, it is a heavy procedure (that is, it requires constant
lighting, a camera stabilizer to fix its position, and isolation
from any kind of an electromagnetic source that may intro-
duce electronic noise into the camera), which also needs
access to the camera that took the photographs. It also
requires a priori knowledge of the form of the camera noise
model, which is not granted. This explains why the establish-
ment of a method able to estimate automatically the noise
model from a single snapshot is a valid question. Furthermore,
if the method can be shown to be reliable even without any
a priori model guess, its credibility will be somewhat
augmented. In this paper, we show that it is indeed possible
to use a nonparametric estimator to get an accurate
noise curve from the noisy image itself, by measuring the vari-
ance locally with patch-based methods [17–22]. This elimi-
nates the need for a lab calibration procedure. Indeed, the
procedure described uses one or several photographs taken
in arbitrary environment and yields a nonparametric noise
model as good (for those images) as the one obtained by
the heavier ground-truth procedure (laboratory calibration).
We also examine the question of whether it is better to use
a parametric or a nonparametric model when dealing with
a single or a few photographs. Our conclusion is that the
nonparametric method gives results comparable to the para-
metric method, but is somewhat less risky as it does not
propagate local estimation errors caused by the presence
of texture in the image.

Our plan follows from the above discussion. Since noise
estimation is a well-known procedure for white homoscedas-
tic noise, Section 2 will review the literature on white
homoscedastic noise estimation and will point out competi-
tive algorithms. Section 3 explains the procedure that should
be followed to get a reliable nonparametric noise curve from a
series of images, under controlled conditions. Section 4
discusses how homoscedastic white noise estimation
algorithms can be adapted to estimate an arbitrary signal-
dependent noise curve. Section 5 compares the root-mean-
squared errors (RMSE) between the nonparametric ground
truth, the STDs from the series of images, and two state-of-
the art parametric methods. Finally, Section 6 presents the
conclusions, which validate our proposed nonparametric
method, but also the use of two state-of-the-art parametric
methods.

2. STATE OF THE ART IN WHITE NOISE
ESTIMATION
Many noise estimation methods share the following features,
which can be summarized in two sentences:

• estimate noise in high frequencies, where noise domi-
nates over signal;

• estimate noise in image regions with the least variation,
typically the blocks with the smallest STDs.

Thus, these numerous methods [18,22–33] proceed roughly
as follows:

• they start by applying some high-pass filter, which
concentrates the image energy on its edges, while the noise
remains spatially homogeneous;

• they compute the energy of many blocks extracted from
this high-passed image;

• they estimate the STDs of the blocks;
• to avoid blocks whose STD is mostly explained by the

underlying ideal image, a statistic robust to (many) outliers
must be applied. The methods therefore prefer the flattest
blocks, which belong to a (low) percentile of the STDs of
all the blocks.

Note that the power spectral density of a natural image is
not homogeneous. Most of the energy corresponding to its
geometry is located at the low and medium frequencies
[see Eq. (1), for example], whereas high-frequency coeffi-
cients bring little visual information (with the exception of
the edges). Conversely, an image can be considered “highly
textured” if the energy at the high-frequency coefficients is
as high as the energy observed at edges. Thus, high-passing
the image before estimating the noise spatially (or equiva-
lently, estimating the noise only at the high-frequency discrete
cosine transform (DCT) coefficients) is an initial step for
many noise estimation algorithms. This enhances the contri-
bution of the noise. Yet, avoiding edges and textures in the
estimation remains necessary.

We shall limit ourselves to discussing the method acknowl-
edged as the best estimator for homoscedastic noise in the
review [8], the Ponomarenko et al. method [31], along with
the two of the most competitive parametric methods for noise
estimation in raw images [34,35]. We briefly describe these
competitors in the next paragraphs. For a complete review
on noise estimation methods, we refer the reader to [8]
and [30].

A. Ponomarenko et al. Approach
The Ponomarenko et al. [31] method is an extension of the
previous method [18], based on the analysis of the DCT coef-
ficients. The orthonormal 2D DCT-II of each block is com-
puted and denoted by Dm�i; j�, where m is the index of the
block, w is its size, and 0 ≤ i, j < w is the frequency pair as-
sociated with that coefficient. The algorithm uses two labels:
“low frequency” and “medium/high frequencies” according to
the value of the function

δ�i; j�≔
�
1; �i� j <T�and�i� j≠ 0�→ low freq;
0; �i� j≥T�or�i� j� 0�→med:∕high freq:

(1)

T is a given threshold. Note that this function does not label
the mean of the block term (i� j � 0) as a low frequency. For
each block, an (empirical) variance associated to the low-fre-
quency coefficients of the block m is defined as

VL
m≔

1
θ

Xw−1

i�0

Xw−1

j�0

�Dm�i; j��2δ�i; j�; (2)
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where

θ �
Xw−1

i�0

Xw−1

j�0

δ�i; j� (3)

is the adequate normalization factor to get a mean. The set of
transformed blocks is rewritten with respect to the corre-
sponding value of VL

m in ascending order with m. Given the
list of sorted blocks fD�m�g, the noise variance estimate asso-
ciated with the high-frequency coefficient at �i; j� is defined by

VH�i; j�≔ 1
K

XK−1

k�0

�D�k��i; j��2; (4)

where i� j ≥ T and K � ⌊pM⌋, p < 1 is the position of the p
quantile in the list fD�m�gm∈�0;M−1�. Note that this empirical vari-
ance estimate is made with the list of the K transformed
blocks whose empirical variance as measured in their low
frequencies is the lowest. It is understood that these blocks
are likely to belong to flat or smooth zones. Thus their high
frequencies are good candidates to estimate the noise with.
In fact, if this is noise, the high and low frequencies are un-
correlated and one can assume that VH�i; j� gives an accurate
estimation of the noise variance. However, if the image is
highly textured, those high-frequency coefficients might give
a variance that is explained by the textures of the image and
not by the noise.

The final noise estimation is given by the median of the
variance estimates VH�i; j�,

σ̂≔�mediani;j�VH�i; j�ji� j ≥ T��1∕2: (5)

The authors of [31] proposed an adaptive strategy to find its
best value. Nevertheless, we adopted a different strategy
based on the ratio between the variances measured at the
median and at given p quantile, as explained in Section 4.
We now discuss two parametric methods that will be com-
pared here.

B. Practical Poissonian–Gaussian Noise Modeling and
Fitting for Single-Image Raw Data
Foi et al. proposed a simple parametric noise model [34] that
takes into account the nonlinear response of the CDD due to
the saturation of the signal and noise at the darkest and bright-
est pixels of the image. The model assumes the well-known
normal approximation, for which the Poisson distribution
P�λ� of the noise can in practice be approximated by the
normal distribution: P�λ� → N �μ � λ; σ � λ�. The method
has two stages. In the first step it estimates several pairs of
intensity/STD that form a scatterplot. In the second step,
the observed pairs are used to fit a global parametric model.
Before applying these two steps, the image is preprocessed.
First, the 2D-wavelet transform of the image is computed
and the wavelet detail coefficients are stored. The 1D Daube-
chies wavelet and scaling functions are used to create the 2D
kernels of the transform. The STD of the noise is obtained
from the detail coefficients of the transformed signal. In order
to be robust against edges, the image is segmented into level
sets according to the intensity. Since the image to be
segmented is noisy, the segmentation is done in a low-pass
filtered version. With the selected regions of the image, the

intensity of each pair is obtained as the sample mean of
the approximation wavelet coefficients and the estimated
variance with the unbiased sample variance estimator. The
last step of the method is to fit the A and B parameters of
the linear model of the variance, for which a maximum-like-
lihood (ML) fitting is performed. However, since saturation
makes the response of the CCD nonlinear, the method needs
to modify the expectation and variance estimators to take
saturation into account. The authors calculated the new
estimators from the distribution of the nonsaturated signal
and gave the explicit expression for the expectation and vari-
ance estimators under saturation. Finally, these new pairs are
incorporated into the ML fitting in order to get the A and B
parameters of the linear model despite the presence of satu-
ration. The model is able to predict the nonlinear response of
the CCD under saturation, giving explicitly the variance of the
clipped noise for any intensity. Therefore, this method will be
used as an example where parametric and nonparametric
methods are cross-validated (Section 5).

C. Image Informative Maps for Component-Wise
Estimating Parameters of Signal-Dependent Noise
In the paper [35] Uss et al. propose to adapt the use of disjoint
informative maps [36] to estimate a parametric signal-
dependent Poisson-like noise model. It discriminates between
two kinds of nonoverlapping blocks [scanning window (SW)]:
those which belong to textures [texture informative (TI)] and
those that are suitable for noise estimation [noise informative
(NI)]. To describe the textures of a given SW in the image,
the 2D fractal Brownian motion (fBm) model is used, since
the model is able to characterize a texture with few parame-
ters. The roughness of the texture is obtained from the Hurst
exponent in the fBm model. The estimation of the noise is
obtained from a limited set of high-frequency coefficients
of the DCT transform of the SWs that belong to the NI
map. This idea was introduced in the Ponomarenko et al.

method [31] and stated as the state-of-the-art technique for
noise estimation [8]. The Cramér–Rao lower bound (CRLB)
is used to decide if a SW belongs to the TI or NI maps, on
the texture parameters and the noise STD of the SW. All
the SWs in the image are sorted according to increasing CRLB
and then compared to a threshold. The SWs below the thresh-
old have the lowest CRLB and therefore belong to the NI map.
The rest are assumed to be textures and assigned to the TI
map. Since the criterion based on the CRLB relies on the (un-
known) texture and noise parameters, the method begins with
an initial guess for the NI and TI maps by fixing a noise STD
and texture level to have an initial and rough CRLB criterion.
Then, with the available CRLB criterion, better STD and tex-
ture levels are computed, allowing for an even better CRLB
criterion. The refining loop is iterated until convergence is
reached. To estimate signal-dependent noise, the set of SW
is partitioned into disjoint intensity sets according to their
mean intensity, and the method is applied separately to each
set in order to get an (intensity–STD) pair. Therefore, this
method is coherent with the claim we make in Section 4,
which states that any block-based homoscedastic noise esti-
mation method can be easily adapted to deal with signal-
dependent noise, just by splitting the whole set of image
blocks of the image into disjoint in intensity sets to apply then
the homoscedastic version of the method to each of these sets.
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For example, if the input image has size Nx × Ny, there are
M � �Nx −w� 1��Nx −w − 1� overlapping blocks, which
may be distributed into a set ofM∕k bins, where each bin con-
tains k image blocks/bin whose mean intensity is a part of the
complete intensity range of the image.

3. NONPARAMETRIC NOISE GROUND-
TRUTH CURVE
Parametric methods fix an a priori model for the noise. For
example, at the output of the CCD a good approximation of
the Poisson noise is to use the normal distribution approxima-
tion, at least when the number of incoming photons is large
enough. Therefore, the variance of the noise is equal to the
expectation. The noise at the output of the CCD detector is
Poissonian, and therefore its variance is linear with the inten-
sity. Also, thermal and electronic noise are added, and the
noisy signal is amplified afterward. Thus, the variance of
the noise can be modeled as a function of the intensity of the
ideal (noise-free) image: σ2�U� � A� BU. However, since the
dynamics of the digital output from the CCD are limited,
the darkest and brightest pixels of the image can get saturated
because of the noise, which becomes clipped noise. Because
of the saturation, the probability distribution of the noise is no
longer a symmetric normal distribution, but a truncated
version with different statistics. The variance of the truncated
distribution does not coincide with that of the normal distri-
bution. Therefore, any realistic parametric estimation method
must take into account that under saturation the simpler
linear model is no longer valid. Some methods [34] adapt their
expectation and variance estimators in order to take into
account the effect of the saturation before fitting the linear
function, while others [35] try to fit with polynomials of higher
order or transform the image in such a way that the linear
model holds.

In any case, the parametric model has to be validated in
order to ensure that the curve they provide is indeed a func-
tion that accurately relates the intensity of the ideal image
with the STD of the added noise. To do it, the estimations
of the parametric method must be compared with a
ground-truth noise curve. For the construction of the ground
truth the constraint of using just a single image is not needed.
Indeed, it can be built from a series of snapshots of a calibra-
tion pattern taken from a camera in fixed position. The series
must be taken under controlled laboratory conditions that
ensure that the temperature and lighting remain constant.
Ideally, any two images of the series should be exactly equal
in absence of noise. Therefore, any variation between the
images is only explained by stochastic light fluctuations (pho-
ton noise and shot noise) and the noise generated by the cam-
era itself (dark noise, readout noise and electronic noise).

If ~Ui�x; y� is a pixel of the noisy image i at position �x; y�, the
intensity of the ideal image can be approximated by its empiri-
cal expectation μ̂�x; y� � E�f ~Ui�x; y�g� for i � 1;…; N , where
N is the number of snapshots in the series. The empirical vari-
ance associated to intensity μ̂�x; y� is σ̂2�x; y� � Var�f ~Ui�x; y�g�.

The calibration pattern must be mostly flat and represent a
wide range of gray levels. Since the noise curve mainly
depends on the ISO sensitivity, a different noise curve is esti-
mated for each ISO level. Series of different exposure times
were taken for each ISO in order to get representative infor-
mation in the whole gray level range. The noise curves for

different times of exposure were combined to obtain a single
curve. In order to get a ground-truth noise curve, for each
exposure time (1∕30 s, 1∕250 s, 1∕400 s, 1∕640 s) about
200 pictures of the calibration pattern were taken. Since each
2 × 2 block of the color filter array (CFA) contains one sample
of the red channel, two samples of the green channel, and one
sample of the blue channel, the raw image was resampled as
an image with four different color channels of half-width and
height. Thus, four different noise ground-truth curves were
obtained from the series, each corresponding to one of the
four channels of the CFA. By splitting the color range into bins

(disjoint in intensity intervals) and computing the median
value of the STDs at each bin, a ground truth is obtained
for the camera noise curve given the ISO and exposure times.

Figure 1 shows the noise curves obtained with a Nikon D80
camera with fixed ISO sensitivity of 1250 and 1600 and four
exposure times, t ∈ f1∕30 s; 1∕250 s; 1∕400 s; 1∕640 sg. The
obtained curves overlap perfectly. Each one treats a different
color interval, thus permitting us to fuse them into a single
noise curve. This fused curve can be observed in the same
figure. For each color value, the fused noise estimation is ob-
tained by the median of the available estimations obtained for
the different exposure time. The value for each curve is lin-
early interpolated using the two closest neighbors. Since
the noise curve does not depend on the exposure time, these
curves overlap (hence the double values). However, this over-
lap is not perfect because the STD is computed with a finite
number of samples and therefore the estimation has some
variance that causes a small error centered at the theoretical
value. Curve (b) is the mean of all four curves at different
exposure times, which cancels their variation around the
theoretical value, and therefore it can be used finally as a
ground truth for evaluating noise estimation algorithms.
Figure 2 displays the approximation of the computed
ground-truth values by a linear model with the Nikon D80

(a) (b)

(c) (d)

Fig. 1. Noise ground-truth curves obtained for a Nikon D80 camera
with fixed ISOs of (a) 1250 and (c) 1600 and four exposure times,
t ∈ f1∕30 s; 1∕250 s; 1∕400 s; 1∕640 sg, using laboratory calibration.
Channels G1 and G2 give the same STD. The obtained curves overlap
perfectly. Since they cover different color intervals, their fusion yields
a complete noise curve (b), (d).

866 J. Opt. Soc. Am. A / Vol. 31, No. 4 / April 2014 Colom et al.



camera. Because of the saturation at the darkest zones, the
estimated noise in the dark gray level does not follow a linear
model. However, using the partial linear model splitting the
curve into three parts might be useful to model this kind of
curve if the noise model is known in advance. The ground-
truth curve obtained with the procedure presented here
describes accurately the characteristics of the noise without
depending only on the minimal assumption that the noise
depends only on the intensity. Parametric methods assume
priors for a particular noise model, and therefore their
accuracy depends on how realistic these assumptions are.
Section 4 shows that it is possible to get a reliable noise curve
that matches with negligible error the nonparametric ground
truth, and Section 5 shows that indeed it is possible to validate
parametric methods with the nonparametric ground-
truth curve.

4. NONPARAMETRIC SIGNAL-DEPENDENT
NOISE ESTIMATION
Parametric models are accurate under the condition of prior
knowledge about the noise model. For example, the Foi et al.
[34] method assumes the linear model σ2 � A� BU for the
variance, but with a saturation effect. On the other hand,
Uss et al. showed that the measured noise variance cannot
always be fitted with a linear function, but with a polynomial
of at least second order [35]. However, we were unable to fit a
second-, third-, or fourth-order polynomial to the saturated
noise curve in Fig. 2. In order to use a linear function, these
authors modify the intensity of the pixels at each SW of the
image by a function that nullifies quadratic and higher terms
of the noise variance model. After this transformation, the
estimation is accurate.

Parametric methods require a validation, by a comparison
to ground-truth noise curves. The data in the ground truth
must be empirical, in the sense that it does not assume any
prior (with the exception that the variance of the noise is a
function of the expectation) and simply measures the variance
of the noise as-is. As discussed in Section 3, the major prob-
lem of the comparison against the ground truth is that it is
different for each camera model and it must be obtained under
controlled laboratory conditions.

Our goal here is precisely to show that the laboratory
calibration method used to obtain the ground truth can be
replaced by a nonparametric method, estimating directly on
the image the signal-dependent noise. We adapted the
Ponomarenko et al. method [31], since it is scored as the best

method in a previous review [8]. Other nonparametric estima-
tion methods could be used as well. For example, in the paper
of Liu et al. [37], a flexible eigenfunction representation of
the noise level curves was proposed, but it requires a priori

segmentation of the noisy image.
We extended the Ponomarenko et al.method [31] to be able

to estimate signal-dependent noise. To this aim, the means of
the blocks are classified into a disjoint union of variable inter-
vals (bins), in such a way that each interval contains a fixed
and large enough number of elements. Thus, these intervals
are automatically adapted to the image itself instead of pre-
fixed, since the intensity range of each bin depends on the
mean intensity of the w ×w blocks in the image. We found
that each bin should contain at least 42,000 samples, which
seems to be the lowest number permitting a reliable estima-
tion. The value of p for the p quantile of block variances must
be small to avoid blocks with large variance, corresponding to
edges and textures. In general, if a bin is made of blocks that
belong to a flat or smooth zone, we found experimentally that
210 per bin are enough to estimate the variance (using p � 0.5,
the median). However, with a smaller p � 0.005 percentile
value, we can discard 99.5% of the blocks with a higher vari-
ance and therefore in general all of the blocks affected by
edges and textures. By choosing a large value for the bin car-
dinality, namely 42,000, we ensure that the blocks below this
low quantile are still numerous enough, 42000 × 0.005 � 210,
so that they ensure a reliable estimate of the noise variance.

To each bin a list of image blocks is associated, each of
them being endowed with a list of STDs. Notice that a bin does
not correspond to a spatial region of the image, but only to a
set of blocks with similar means.

Another modification with respect to the original method is
the procedure to find the best p quantile. The values in the list
fVH�i; j�g [see Eq. (4)] depend on the choice of p quantile. If p
is small, the method becomes more robust to the influence of
the textures and geometry of the image, but the accuracy of
the estimation also decreases with p. Our assumption is that
the variance measured using p � 0.5 (the median) should not
be significantly different from the variance obtained with
lower values of p, unless the image is composed mainly of
textures. The proposed iteration to get a robust estimation
of the variance, adapting p, is as follows. At each bin,

1. Initially, p � 0.5 (the median) and Δp � 0.005.
2. Set S � fVH�i; j�ji� j ≥ Tg.
3. Set Vs to the median of the values of S under the Δp

quantile.
4. Set Vp to the median of the values of S under the p

quantile.
5. If p ≥ Δp and Vp ≤ Vs, then [set p � p − Δp and go to

step 3]; else END.

This procedure decreases the initial p from the median to a
lower value that makes the estimation robust to textures and
geometry, if needed.

About the w ×w size of the SW, we use the same value that
the authors of the original algorithm proposed, and we found
that indeed the best results are obtained with w � 8 in most
natural images. Since the optimal size of the window depends
on the density of edges and level of texturization of the noisy
image, if it is a priori known that the image is mainly com-
posed of large flat or smooth areas, it is better to use a larger

Fig. 2. Linear approximation of the variance ground truth in Fig. 1
with the Nikon D80 with ISO 1600 (solid lines, original values; dashed
lines, approximation). Exposure time (a) 1∕30 s and (b) 1∕640 s.
Because of the saturation at the darkest zones, the estimated noise
in the dark gray level does not follow a linear model.
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window (up to 21 × 21) and to choose a smaller size in the
opposite case (but at least 3 × 3) to obtain a reliable variance
noise estimation. A larger window estimates the noise more
accurately (since the sample variance estimator has itself a
variance that depends on the number of available samples),
but is less likely to contain only data from flat or smooth
zones, and more likely to capture edges and geometry. Never-
theless, the proposed method is “blind,” in the sense that no
prior information about the characteristics of the image or
the noise is available. Adapting the window size is beyond
the scope of this paper, and it is left as future work.

To avoid outliers in the estimation, we systematically dis-
card completely saturated blocks. Indeed, when the number
of photons counted by the CCD during the exposure time is
too high, its output may get saturated, and therefore underes-
timated. When the signal saturates the output of the CCD, the
measured variance in the saturated areas of the image is zero.
Indeed, the effect of the saturation must be measured and
given by the nonparametric method in the produced noise
curve, but the completely saturated pixels have outlier inten-
sities. Figure 3 shows a noise curve obtained by using or
avoiding the saturated blocks, where the modified Ponomar-
enko et al. [31] algorithm was performed with 49 bins. Since
the intensity of the saturated pixels is much higher (outlier)
than the intensity of the rest of the points, the noise curve
is linearly interpolated along the gap in between. This natural
image is a normal scene that is useful to illustrate the problem
of the saturation. The bike is not illuminated directly by any
source of light (only ambient light), and therefore it does not
reflect much light, with the exception of a few points at the
handlebar that reflect light with enough power to saturate the
detectors. The STD equal to zero (measured near intensity
4000) is indeed correct, but all the interpolated points in
between are definitely not. The strategy we adopted was to
discard the blocks that contain a subgroup of 2 × 2 pixels shar-
ing the same intensity, in any of the channels. It must be noted
that this only removes the blocks containing pixels that are
completely saturated, but keeps the rest of the blocks, includ-
ing those where the noise distribution is truncated, but not

absolutely saturated. This permits us to measure and observe
the saturation in the curve, as shown in Fig. 2.

5. CROSS-VALIDATION OF SEVERAL
METHODS. DISCUSSION
In order to compare ground truth, parametricmethods, andour
nonparametric method, we used a dataset of 20 images ob-
tained with a Nikon D80 camera using ISO 1250 and exposure
time 1∕640 s. In these images the darkest pixels are saturated,
and therefore the noise curve does not follow the linear vari-
ance model. Our dataset contains some views of a room with
objects over a table, and images of corridors, bookshelves,
(Fig. 6) stairs, and classrooms inside a building, with different
lighting levels. Also, two outdoor images of highly textured
images (Fig. 5). For each test image, we computed the RMSE
between theSTDs givenby themethod andby the ground truth.
The control points are given by the method, and the STD of the
ground truth corresponding to that intensity is obtained by
linear interpolation between the two nearest intensity control
points of the ground-truth curve.

Figure 4 shows the obtained results. In general, the RMSE
of the modified Ponomarenko et al. (red curve) method is
close to zero, which means that it could be used to establish
a (nonparametric) ground truth. The estimations given by Foi
et al. (green curve) and Uss et al. (blue curve) are really close
to the nonparametric ground truth, and are therefore also va-
lidated by our approach. The Foi et al. method failed to mea-
sure the noise correctly when the images were composed
mainly of textures (image nos. 19 and 20; see Fig. 5), whereas
the Uss et al. and the proposed method gave good results in
that case. Note that textures cause a localized error in the non-
parametric curve (middle), whereas they cause a global error
in the parametric curves. Figure 6 shows three examples of
images in our dataset (images nos. 8 and 12), where all algo-
rithms estimated the noise correctly. The Foi et al. method
(red curve) matches accurately the ground-truth curves
(green and blue), since it is designed to predict the shape
of the curve under saturation conditions, whereas the Uss
et al. estimation is overall correct, except in the saturation
zone, as expected. As explained in Section 2, the original
Ponomarenko method is only able to estimate homoscedastic
noise, that is, a value of STD that does not depend on the
intensity. Equation (5) shows how this STD, which does

Fig. 3. Noise curve obtained (b) when the saturated pixels are
avoided in the noise estimation and (c) when they are taken into
account by using the Ponomarenko et al. method [31] with 49 bins
in an image with saturated pixels (a).

Fig. 4. RMSE between the methods and the ground truth for all 20
images in our dataset. In general, the RMSE of the modified Ponomar-
enko et al. (red curve) method is close to zero, which means that in-
deed it can be considered a nonparametric ground-truth curve. The
estimations given by Foi et al. (green curve) and Uss et al. (blue curve)
are really close to the nonparametric ground truth, and therefore
they are also validated by our approach. (a) Obtained RMSEs/image,
(b) detailed view.
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not depend on the intensity, is computed. However, in Figs. 5
and 6 we show noise curves that correspond to the modified
Ponomarenko method: added bins to get control points in the

curve for different intensities and avoid using completely sa-
turated points before the estimation. Of course, the overesti-
mation caused by a bin where all samples belong to textures
can be avoided if more than a single image is available, by
estimating the noise in the mosaic made of several different
input images.

As shown in Fig. 2, the linear model does not hold when the
image is saturated. Uss et al. tried to use a second-order poly-
nomial to fit the saturated noise curve. However, we found
that a second-order polynomial was not general enough to
fit the saturated curves. Foi et al. assumed the linear model,
but taking into account the effect of the saturation. However,
both methods assume that the noise can be modeled with a
linear function when there is no saturation. This is true for
most CCDs, but the output recorded in the raw file given
by the camera might not be a linear function of the intensity
[38]. This makes clear the necessity of validating parametric
methods, which assume an a priori model for the noise. In
contrast, the estimates of a nonparametric method rely on
the minimal assumption that the signal is a function of the
expectation. In general, the best results are obtained with
the modified Ponomarenko et al. method.

To decide if a method is valid or not, its RMSE with respect
to the nonparametric ground truth has to be compared to a
threshold. We consider that a method is valid if the RMSE be-
tween the measured STD and the ground truth is less than or
equal to Δσ̂8 � 0.15 (assuming that the images are encoded
with 8 bits). This value was chosen to be as low as possible
and, at the same time, consistent with the accuracy of state-of-
the-art noise estimation methods. Since the raw images are
encoded with 12 bits, the threshold is γ � Δσ̂8 × 16 � 2.4.
The estimation of the Foi et al. method is considered valid
in 17 of 20 images, whereas the Uss et al. method is validated
with all the images in our dataset.

A. Complexity
The Uss et al. method follows four steps: (1) initialization of
the TI map and the polynomial function for the variance;
(2) estimate texture and noise variance for each TI and NI
SW and label the SW into NI or TI; (3) update the CRLB;
and (4) apply the noise estimator to the samples associated
with each bin and update the variance polynomial. Steps 2,
3, and 4 are iterated until convergence is reached. The com-
plexity of the Uss et al. and the modified Ponomarenko et al.

methods is similar, and their complexity is linear with the
number of pixels in the image. Both imply an estimation of
the noise variance at the DCT coefficients in small patches
of the image after classifying them according to their intensity.
For its part, the Foi et al. method follows these steps in order
to obtain the final parametric model: compute the detail wave-
let coefficients of the image, segment the image to find homo-
geneous zones, estimate locally pairs of intensity/variance,
and finally the ML fitting of the global parametric model.
All steps can be computed quickly, but unlike Uss et al.

and the modified Ponomarenko et al. method, it requires a
previous segmentation of the image.

B. Denoising Results
We used the noise curves obtained with the Uss et al., the Foi
et al., and the modified Ponomarenko et al. methods as the
input of the NL-Bayes [39] denoising algorithm, after applying

(a) (b)

(c) (d)

Fig. 5. Highly textured images that caused small oscillations in the
noise curves with the proposed method and wrong results with Foi
et al.: images (a) no. 19 and (b) no. 20 (see the obtained RMSEs in
Fig. 4). (c), (d) Ground truth obtained with the series (green), the non-
parametric ground truth (darker blue), the Uss et al.method (brighter
blue), and the Foi et al. method (red).

Fig. 6. Examples of images [(a) no. 8 and (b) no. 12 in our dataset] in
which all algorithms estimated the noise correctly. (c), (d) Their noise
curves along all the intensity range. (e), (f) Detail of the noise curves
only within the range of the estimation given by the modified Pono-
marenko et al. method (nonparametric ground truth, green curve).
Note that the Foi et al. method (red curve) matches accurately the
ground-truth curves (green and blue), since it is designed to predict
the shape of the curve under saturation conditions, whereas the Uss
et al. estimation is overall correct, except in the saturation zone.
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a VST to the noisy image. Only the green channel was used.
Note that according to our threshold criterion, both the Uss
et al. and Foi et al. methods are validated, and therefore their
denoising results in almost all images in the dataset being very
similar. Figure 7(a) shows details of the results obtained for
image no. 3 of our dataset, where the Foi et al. method failed
to estimate the noise correctly. While the Uss et al. and the
modified Ponomarenko et al. methods denoise the image
properly, the noise at the dark zone (the bag over the table)
remains visible. Image (e) is test image no. 20 of our dataset,
where the Uss et al. and the modified Ponomarenko et al.

methods give an valid estimation, whereas the Foi et al.

method overestimates. All methods gave an increased RMSE
for that particular image, which causes blurred denoised
images and loss of fine details. Both the Uss et al. and the
modified Ponomarenko et al. methods give similar visual

results, whereas the overestimation in the method blurs the
image even more.

6. CONCLUSIONS
We showed that estimating an accurate noise curve from a
single raw image is possible and can be done by an adaptation
of a nonparametric noise estimator [31]. The only minimal
assumption is that the noise STD is a function of the expected
signal. Being able to apply a noise estimator (with relatively
low complexity compared to denoising algorithms) to each
raw image frees the users of a tedious and sometimes impos-
sible camera calibration task. Indeed, noise curves obtained in
an optical lab require measurements for each ISO and each
optical setup, a heavy and costly procedure. By estimating
the noise directly on the raw image, there is no risk of model
error or accuracy loss caused by a noise parameter estimation
on another camera.

According to the provided RMSE results (see Fig. 4), the
nonparametric method proposed here exhibits a very stable
error (close to RMSE � 0.5) when the image is not composed
mainly of textures. However, even if the image is highly
textured (see images nos. 19 and 20 in Fig. 5), the error is
small and similar to the RMSE obtained with the compared
state-of-the-art methods.

In general, the estimation given by the proposed method is
as reliable as the actual ground truth obtained from the
temporal series of the series of images of a calibration pattern
in the laboratory, and matches the best parametric methods.
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