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Abstract

Digital images are matrices of regularly spaced pixels, each containing a photon count.
This photon count is a stochastic process due to the quantic nature of light. It follows that
all images are noisy. Ever since digital images exist, numerical methods have been proposed
to improve the signal to noise ratio. Such “denoising” methods require a noise model and an
image model. It is relatively easy to obtain a noise model. As will be explained in the present
paper, it is even possible to estimate it from a single noisy image.

Obtaining a convincing statistical image model is quite another story. Images reflect the
world and are as complex as the world. Thus, any progress in image denoising signals a
progress in our understanding of image statistics. The present paper contains an analysis
of nine recent state of the art methods. This analysis shows that we are probably close to
understanding digital images at a “patch” scale. Recent denoising methods use thorough non
parametric estimation processes for 8 x 8 patches, and obtain surprisingly good denoising
results.

The mathematical and experimental evidence of two recent articles suggests that we might
even be close to the best attainable performance in image denoising ever. This suspicion is
supported by a remarkable convergence of all analyzed methods. They certainly converge in
performance. We intend to demonstrate that, under different formalisms, their methods are
almost equivalent. Working in the 64-dimensional “patch space”, all recent methods estimate
local “sparse models” and restore a noisy patch by finding its likeliest interpretation knowing
the noiseless patches.

The story will be told in an ordinate manner. Denoising methods are complex and have
several indispensable ingredients. Noise model and noise estimation methods will be explained
first. The four main image models used for denoising: the Markovian-Bayesian paradigm,
the linear transform thresholding, the so-called image sparsity, and an image self-similarity
hypothesis will be presented in continuation. The performance of all methods depends on three
generic tools: colour transform, aggregation, and an “oracle” step. Their recipes will also be
given. These preparations will permit to present, in a unified terminology, the complete recipes
of nine different state of the art patch-based denoising methods. Three quality assessment
recipes for denoising methods will also be proposed and applied to compare all methods.
The paper presents an ephemeral state of the art in a burgeoning subject, but many of the
presented recipes will remain useful. Most denoising recipes can be tested directly on any
digital image at Image Processing On Line, http://wuw.ipol.im/.
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Notation

i, j, r, s image pixels
u(i) image value at i, denoted by U(i) when the image is handled as a vector
(i) noisy image value at i, written U (i) when the image is handled as a vector
(i) restored image value, U(i) when the image is handled as a vector

(i) noise at i

N patch of noise in vector form

m number of pixels j involved to denoise a pixel i

P reference patch, @, other patch compared to P

P, @ noisy patches

P restored patch

S
w(P,Q) = e~ "5 interaction weight between P and Q

d(P, Q) Euclidean distance between patches (considered as vectors of their values)

o standard deviation of white noise at each pixel

K X k: dimension of patches.

A X A: dimension of research zone in which similar patches are searched

N (u, C) vectorial Gaussian distribution with mean vector p and covariance matrix C
P(G) probability of an event G (in the image and noise stochastic models)

EQ : expectation (of a random patch Q)

P empirical expectation of the patches similar to P

A image Laplace operator (sum of the second derivatives in two orthogonal directions)
DCT(n1,n2) 2D discrete cosine transform at frequencies ny, na

p percentile value of a histogram (between 0% and 100%)

w X w block size for estimating the noise

¢ estimated value of the noise

b number of bins

h result of a high-pass filter on @

V gradient (of an image)

M total number of pixels or patches in the image, total number of patches in the patch space
Cp covariance matrix (of patches similar to P or P)

P, restored patch at the first application of a denoising algorithm

P, restored patch at the second application of a denoising algorithm

B = {G;}M, orthonormal basis of RM

D diagonal linear operator. Dictionary of patches considered as a matrix

Ngic size of the dictionary (number of patches in it)

A linear operator, applied to the image u encoded as a vector U

p(P) density function of patches

K number of patch clusters. Number of wavelet coefficients

k index in K

Q. patch cluster

i index of patch P; (in a patch cluster, in the image)

U
n



1 Introduction

Most digital images and movies are currently obtained by a CCD device. The value (i) observed
by a sensor at each pixel i is a Poisson random variable whose mean w(i) would be the ideal
image. The difference between the observed image and the ideal image a(i) — u(i) = n(i) is
called “shot noise”. The standard deviation of the Poisson variable (i) is equal to the square
root of the number of incoming photons (i) in the pixel captor i during the exposure time. The
Poisson noise n adds up to a thermal noise and to an electronic noise which are approximately
additive and white. On a motionless scene with constant lighting, u(i) can be approached by
simply accumulating photons for a long exposure time, and by taking the temporal average of this
photon count, as illustrated in figure 1.

Accumulating photon impacts on a surface is therefore the essence of photography. The first
Nicéphore Niépce photograph [34] was obtained after an eight hours exposure. The problem of a
long exposure is the variation of the scene due to changes in light, camera motion, and incidental
motions of parts of the scene. The more these variations can be compensated, the longer the
exposure can be, and the more the noise can be reduced. If a camera is set to a long exposure
time, the photograph risks motion blur. If it is taken with short exposure, the image is dark, and
enhancing it reveals the noise.

A recently available solution is to take a burst of images, each with short-exposure time, and
to average them after registration. This technique, illustrated in Fig. 1, was evaluated recently
in a paper that proposes fusing bursts of images taken by cameras [28]. This paper shows that
the noise reduction by this method is almost perfect: fusing m images reduces the noise by a /m
factor.

It is not always possible to accumulate photons. There are obstacles to this accumulation in
astronomy, biological imaging and medical imaging. In day to day images, the scene is moving,
which limits the exposure time. The main limitations to any imaging system are therefore the
noise and the blur. In this review, experiments will be conducted on photographs of scenes taken
by normal cameras. Nevertheless, the image denoising problem is a common denominator of all
imaging systems.

A naive view of the denoising problem would be: how to estimate the ideal image, namely the
mean u(i), given only one sample 4(i) of the Poisson variable? The best estimate of this mean is
of course this unique sample %(i). Getting back a better estimate of u(i) by observing only (i) is
impossible. Getting a better estimate by using also the rest of the image is obviously an ill-posed
problem. Indeed, each pixel receives photons coming from different sources.

Nevertheless, a glimpse of a solution comes from image formation theory. A well-sampled
image u is band-limited [136]. Thus, it seems possible to restore the band-limited image u from its
degraded samples 4, as was proposed in 1966 in [73]. This classic Wiener-Fourier method consists
in multiplying the Fourier transform by optimal coefficients to attenuate the noise. It results in a
convolution of the image with a low-pass kernel.

From a stochastic viewpoint, the band-limitedness of u also implies that values @(j) at neigh-
boring pixels j of a pixel i are positively correlated with @(i). Thus, these values can be taken
into account to obtain a better estimate of u(i). These values being nondeterministic, Bayesian
approaches are relevant and have been proposed as early as 1972 in [133].

In short, there are two complementary early approaches to denoising, the Fourier method, and
the Bayesian estimation.

The Fourier method has been extended in the past thirty years to other linear space-frequency
transforms such as the windowed DCT [152] or the many wavelet transforms [114].

Being first parametric and limited to rather restrictive Markov random field models [69], the
Bayesian method are becoming non-parametric. The idea for the recent non parametric Markovian
estimation methods is a now famous algorithm to synthesize textures from examples [60]. The
underlying Markovian assumption is that, in a textured image, the stochastic model for a given
pixel i can be predicted from a local image neighborhood P of i, which we shall call “patch”.

The assumption for recreating new textures from samples is that there are enough pixels j
similar to i in a texture image % to recreate a new but similar texture u. The construction



Figure 1: From left to right: (a) one long-exposure image (time=0.4 s, ISO=100), one of 16
short-exposure images (time=1/40 s, ISO=1600) and their average after registration. The long
exposure image is blurry due to camera motion. (b) The middle short-exposure image is noisy. (c)
The third image is about four times less noisy, being the result of averaging 16 short-exposure
images. From [28].

of u is done by nonparametric sampling, amounting to an iterative copy-paste process. Let us
assume that we already know the values of v on a patch P surrounding partially an unknown pixel
i. The Efros-Leung [60] algorithm looks for the patches P in @ with the same shape as P and
resembling P. Then a value u(i) is sorted among the values predicted by @ at the pixels resembling
j- Indeed, these values form a histogram approximating the law of w(i). This algorithm goes back
to Shannon’s theory of communication [136], where it was used for the first time to synthesize a
probabilistically correct text from a sample.

As was proposed in [17], an adaptation of the above synthesis principle yields an image de-
noising algorithm. The observed image is the noisy image 4. The reconstructed image is the
denoised image 4. The patch is a square centered at i, and the sorting yielding u(i) is replaced
by a weighted average of values at all pixels 4(j) similar to i. This simple change leads to the
“non-local means” algorithm, which can therefore be sketched in a few rows.

Algorithm 1 Non-local means algorithm

Input: noisy image u, o noise standard deviation. Output: denoised image .

Set parameter k£ X k: dimension of patches.

Set parameter A x A: dimension of research zone in which similar patches are searched.

Set parameter C.

for each pixel i do
Select a square reference sub-image (or “patch”) P around i, of size k X k.
Call P the denoised version of P obtained as a weighted average of the patches Q in a
square neighborhood of i of size A x A. The weights in the average are proportional to

~ ~ 2(p,0 ~ ~ ~ ~
w(P,Q) =¢e" e where d(P, Q) is the Euclidean distance between patches P and Q.
end for
Aggregation: recover a final denoised value (i) at each pixel i by averaging all values at i of all

denoised patches @) containing i

It was also proved in [17] that the algorithm gave the best possible mean square estimation
if the image was modeled as an infinite stationary ergodic spatial process (see sec. 5.1 for an
exact statement). The algorithm was called “non-local” because it uses patches Q that are far
away from P, and even patches taken from other images. NL-means was not the state of the art
denoising method when it was proposed. As we shall see in the comparison section 6, the 2003
Portilla et al. [128] algorithm described in sec. 5.6 has a better PSNR performance. But quality
criteria show that NL-means creates less artifacts than wavelet based methods. This may explain



why patch-based denoising methods have flourished ever since. By now, 1500 papers have been
published on nonlocal image processing. Patch-based methods seem to achieve the best results in
denoising. Furthermore, the quality of denoised images has become excellent for moderate noise
levels. Patch-based image restoration methods are used in many commercial software.

An exciting recent paper in this exploration of nonlocal methods raises the following claim [92]:
For natural images, the recent patch-based denoising methods might well be close to optimality. The
authors use a set of 20000 images containing about 10'° patches. This paper provides a second
answer to the question of absolute limits raised in [32], “Is denoising dead?”. The Cramer-Rao
type lower bounds on the attainable RMSE performance given in [32] are actually more optimistic:
they allow for the possibility of a significant increase in denoising performance. The two types
of performance bounds considered in [92] and [32] address roughly the same class of patch-based
algorithms. It is interesting to see that these same authors propose denoising methods that actually
approach these bounds, as we shall see in section 5.

The denoising method proposed in [92] is actually based on NL-means (algorithm 1), with
the adequate parameter C' to account for a Bayesian linear minimum mean square estimation
(LMMSE) estimation of the noisy patch given a database of known patches. The only and impor-
tant difference is that the similar patches @) are found on a database of 10'° patches, instead of
on the image itself. Furthermore, by a simple mathematical argument and intensive simulations
on the patch space, the authors are able to approach the best average estimation error which will
ever be attained by any patch-based denoising algorithm (see sec. 5.4.)

These optimal bounds are nonetheless obtained on a somewhat restrictive definition of patch-
based methods. A patch-based algorithm is understood as an algorithm that denoises each pixel by
using the knowledge of: a) the patch surrounding it, and b) the probability density of all existing
patches in the world. It turns out that state of the art patch-based denoising algorithms use more
information taken in the image than just the patch. For example, most algorithms use the obvious
but powerful trick to denoise all patches, and then to aggregate the estimation of all patches
containing a given pixel to denoise it better. Conversely, these algorithms generally use much less
information than a universal empirical law for patches. Nevertheless, the observation that at least
one algorithm, BM3D [39] might be arguably very close to the best predicted estimation error is
enlightening. Furthermore, doubling the size of the patch used in the [92] paper would be enough
to cover the aggregation step. The difficulty is to get a faithful empirical law for 16 x 16 patches.

The “convergence” of all algorithms to optimality will be corroborated here by the thorough
comparison of nine recent algorithms (section 6). These state of the art algorithms seem to attain
a very similar qualitative and quantitative performance. Although they initially seem to rely on
different principles, our final discussion will argue that these methods are equivalent.

Image restoration theory cannot be reduced to an axiomatic system, as the statistics of images
are still a widely unexplored continent. Therefore, a complete theory, or a single final algorithm
closing the problem are not possible. The problem is not fully formalized because there is no
rigorous image model. Notwithstanding this limitation, rational recipes shared by all methods can
be given, and the methods can be shown to rely on only very few principles. More precisely, this
paper will present the following recipes, and compare them whenever possible:

several families of noise estimation techniques (sec. 2);

the four denoising principles in competition (sec. 3);

three techniques that improve every denoising method (sec. 4);

nine complete and recent denoising algorithms. For these algorithms complete recipes will
be given (sec. 5);

e three complementary and simple recipes to evaluate and compare denoising algorithms (sec.
6).

Using the three comparison recipes, six emblematic or state of the art algorithms, based on
reliable and public implementations, will be compared in sec. 6. This comparison is followed by
a synthesis (sec. 7) hopefully demonstrating that, under very different names, the state of the art
algorithms share the same principles.



Nevertheless, this convergence of results and techniques leaves several crucial issues unsolved.
(This is fortunate, as no researcher likes finished problems.) With one exception, (the BLS-GSM
algorithm, sec. 5.6), state of the art denoising algorithms are not multiscale. High noises and
small noises also remain unexplored.

In a broader perspective, the success of image denoising marks the discovery and exploration of
one of the first densely sampled high dimensional probability laws ever (numerically) accessible to
mankind: the “patch space”. For 8 x8 patches, by applying a local PCA to the patches surrounding
a given patch, one can deduce that this space has a dozen significant dimensions (the others being
very thin). Exploring its structure, as was initiated in [87], seems to be the first step toward the
statistical exploration of images. But, as we shall see, this local analysis of the patch space already
enables state of the art image denoising.

Most denoising and noise estimation algorithms commented here will be available at the journal
Image Processing on Line, http: //www. ipol. im/. In this web journal, each algorithm is given
a complete description, the corresponding source code, and can be run online on arbitrary images.
By the time this paper is published, most results and techniques presented herewith will be
effortlessly verifiable and reproducible online.

This introduction ends with a quick review of many contributions of interest seen recently
about patch-based methods, which nevertheless fall beyond our limited scopes (sec. 1.1).

1.1 Miscellaneous “patch based” considerations and applications

Statistical validity This paper will compare patch-based algorithms on their structure, and on
their practical performance, which is licit, in absence of a satisfactory mathematical or statistical
model for digital images. Nonetheless, statistical arguments have also been developed to explore
the validity of denoising algorithms. The statistical validity of NL-means is discussed in [141],
[83] and [57] (where a Bayesian interpretation is proposed) or [151] where a bias of NL-means
is corrected. [137] gives “a probabilistic interpretation and analysis of the method viewed as a
random walk on the patch space”. The most complete recent study is made in the realm of Minimax
approximation theory. The Horizon class of images, which are piecewise constant with a sharp
edge discontinuity [106] permits to perform an asymptotic analysis. The images are discontinuous
across the edge and the edge itself is smooth, being in an H¥(C) class. A real function is in this
class for a > 0 if [h{eD () — p(D (5)] < C|t — s|*~[°], where [a] is the integer part of a.

The principle is to measure the expected approximation rate of a denoising algorithm applied
to m noisy samples of an image u in the horizon class. This image u is given by m samples, and
these samples are perturbed by a white noise with variance o2. A denoising algorithm delivers a
corrected function 4. The risk function of this algorithm is defined as the expectation R,,(u, ) of
the mean square distance of v and 4. Given a class of functions F, the minimazx risk is defined by

Ry, (F) = inf sup Ry, (u, @),
U ueF

where the inf is taken over all measurable estimators. It can be proven [108] that for o > 1,
Ry (H(C)) ~ m™ =41, (1)

For example for @ = 2, which corresponds to edges with bounded curvature, the optimal rate is
n~35. This result gives a sort of yardstick to measure, if not the performance, at least the theoretical
limits of every denoising algorithm. This analysis has been conducted for several basic denoising
methods including NL-means in [106]. The authors show that the decay rate is about m~!, close to
the one obtained with wavelet threshold denoising, better than rates of elementary filters such as a
linear convolution, the median filter and the bilateral filter which have rates m~3. The decay rate
of NL-means is nonetheless away from the optimal minimax rate of m~%/3, which is only attained
for & = 2 by the wedgelet transform. The same authors prove in [105] that an anisotropic nonlocal
means (ANLM) algorithm is near minimax optimal for edge-dominated images from the Horizon
class. The idea is to orient optimally rectangular thin blocks for performing the comparison. The
algorithms improves on NL-means by approximately one decibel.



Other noise models. The present article focuses on algorithms removing white additive noise
from digital optical images. There are other types of noise in other imaging systems. Thus,
this study cannot account for the burgeoning variety of patch-based algorithms. Improvements
or adaptations of NL-means have been proposed in cryo-electron microscopy [45], fluorescence
microscopy [11], magnetic resonance imaging (MRI) [109], [8], [149], [117], multispectral MRI:
[110], [16], and diffusion tensor MRI (DT-MRI) [148].

More invariance. Likewise, several papers have explored which degree of invariance could be
applied to image patches. [160] explores a rotationally invariant block matching strategy improving
NL-means, and [58] uses cross-scale (i.e., down-sampled) neighborhoods in the NL-means filter.
See also [105], mentioned above as reaching better minimax limits. It uses oriented anisotropic
patches. Self-similarity has also been explored in the Fourier domain for MRI in [112].

Fast patch methods Several papers have proposed fast and extremely fast (linear) NL-means
implementations, by block pre-selection [98], [10], by Gaussian KD-trees to classify image patches
[1], by SVD [121], by using the FFT to compute correlation between patches [146], by statistical
arguments [38] and by approximate search [9], also used for optical flow.

Other image processing tasks The non-local denoising principle has also been expanded to
most image processing tasks: Demosaicking, the operation which transforms the “R or G or B”
raw image in each camera into an “R and G and B” image [25], [102], movie colourization, [65]
and [93]; image inpainting by proposing a non local image inpainting variational framework with a
unified treatment of geometry and texture [5] (see also [150]) ; zooming by a fractal like technique
where examples are taken from the image itself at different scales [57]; mowvie flicker stabilization
[51], compensating spurious oscillations in the colours of successive frames; super-resolution, an
image zooming method fusing several frames from a video, or several low resolution photographs,
into a larger image [129]. The main point of this super-resolution technique is that it gives up an
explicit estimate of the motion, allowing actually for a multiple motion, since a block can look like
several other patches in the same frame. The very same observation is made in [59] for devising a
super-resolution algorithm, and also in [63], [41]. Other classic image nonlocal applications include
image contrast enhancement by applying a reverse non local heat equation [20], and Stereo vision,
by performing simultaneous non-local depth reconstruction and restoration of noisy stereo images
[75].

The link to PDE’s, variational variants The relationship of neighborhood filters to classic
local PDE’s has been discussed in [21] and [22] leading to an adaptation of NL-means which
avoids the staircase effect. Nonlocal image-adapted differential operators and non-local variational
methods are introduced in [84], which proposes to perform denoising and deblurring by non-local
functionals. The general goal of this development is actually to give a variational form to all
neighborhood filters, and to give a non local form to the total variation [134] as well. Several articles
on deblurring have followed this variational line [78], [115], [70] (for image segmentation), [11] (in
fluorescence microscopy), [158], again for nonlocal deconvolution and [96] for deconvolution and
tomographic reconstruction. In [63], a paper dedicated to another notoriously ill-posed problem,
the super-resolution, the non-local variational principle is viewed as “an emerging powerful family
of regularization techniques”, and the paper “proposes to use the example-based approach as a
new regularizing principle in ill-posed image processing problems such as image super-resolution
from several low resolution photographs.” A particular notion of non-local PDE has emerged,
whose coefficients are actually image-dependent. For instance, in [65] the image colourization is
viewed as the minimization of a discrete partial differential functional on the weighted block graph.
Thus, it can be seen either as a non-local heat equation on the image, or as a local heat equation
on the space of image patches.



The geometric interpretation in a graph of patches In an almost equivalent framework,
in [140] the set of patches is viewed as a weighted graph, and the weights of the edge between
two patches centered at i and j respectively are decreasing functions of the block distances. Then
a graph Laplacian can be calculated on this graph, seen as the sampling of a manifold, and NL-
means can be interpreted as the heat equation on the set of blocks endowed with these weights.
In the same way, the neighborhood filter can be associated with a heat equation on the image
graph [125]. This approach is further extended to a variational formulation on patch graphs in
[64]. In this same framework [20] proposed to perform image contrast enhancement by applying
a non-local reverse heat equation. Finally, always in this non-local partial differential framework,
[14] extends the Mumford-Shah image segmentation energy to contain a non-local self-similarity
term replacing the usual Dirichlet term. The square of the gradient is replaced by the square of
the non-local gradient.

2 Noise

2.1 Noise models

Most digital images and movies are obtained by a CCD device and the main source of noise is
the so-called shot moise. Shot noise is inherent to photon counting. The value @(i) observed
by a sensor at each pixel i is a Poisson random variable whose mean would be the ideal image.
The standard deviation of this Poisson distribution is equal to the square root of the number of
incoming photons (i) in the pixel captor i during the exposure time. This noise adds up to a
thermal noise and to an electronic noise which are approximately additive and white.

For sufficiently large values of (i), (a(i) > 1000), the normal distribution N (a(i), y/a(i)) with
mean (i) and standard deviation /(i) is an excellent approximation to the Poisson distribution.
If a(i) is larger than 10, then the normal distribution still is a good approximation if an appropriate
continuity correction is performed, namely P(a(i) < a) ~ P(a(i) < a + 0.5), where a is any non-
negative integer.

Nevertheless, the pixel value is signal dependent, since its mean and variance depend on 4(i). To
get back to the classic “white additive Gaussian noise” used in most researches on image denoising,
a variance-stabilizing transformation can be applied: When a variable is Poisson distributed with
parameter 4(1), its square root is approximately normally distributed with expected value of about
\/4(1) and variance of about 1/4. Under this transformation, the convergence to normality is faster
than for the untransformed variable!. The most classic VST is the Anscombe transform [3] which
has the form f(ug) = by/ug + c.

The denoising procedure with the standard variance stabilizing transformation (VST) proce-
dure follows three steps,

1. apply VST to approximate homoscedasticity;
2. denoise the transformed data;

3. apply an inverse VST.

Note that the inverse VST is not just an algebraic inverse of the VST, and must be optimized to
avoid bias [104].

Consider any additive signal dependent noisy image, obtained for example by the Gaussian
approximation of a Poisson variable explained above. Under this approximation, the noisy image
satisfies @ ~ 4 + g(@)n where n ~ N(0,1). We can search for a function f such that f(a) has
uniform standard deviation,

fa) = f(@) + f'(a)g(@)n.

Forcing the noise term to be constant, f'(@)g(2) = ¢, we get

1See http://en.wikipedia.org/wiki/Poisson_distribution.



and integrating )
“edt
f = [ .
o 9(t)

When a linear variance noise model is taken, this transformation gives back an Anscombe trans-
form. Most classical denoising algorithms can also be adapted to signal dependent noise. This
requires varying the denoising parameters at each pixel, depending on the observed value a(i).
Several denoising methods indeed deal directly with the Poisson noise. Wavelet-based denoising
methods [119] and [85] propose to adapt the transform threshold to the local noise level of the
Poisson process. Lefkimmiatis et al. [91] have explored a Bayesian approach without applying
a VST. Deledalle et al., [47] argue that for high noise level it is better to adapt NL-means than
to apply a VST. These authors proposed to replace the Euclidean distance between patches by
a likelihood estimation taking into account the noise model. This distance can be adapted to
each noise model such as the Poisson, the Laplace or the Gamma noise [49], and to more complex
(speckle) noise occurring in radar (SAR) imagery [50].

Nonetheless, dealing with a white uniform Gaussian noise makes the discussion on denoising
algorithms far easier. The recent papers on the Anscombe transform [104] (for low count Poisson
noise) and [66] (for Rician noise) argue that, when combined with suitable forward and inverse
VST transformations, algorithms designed for homoscedastic Gaussian noise work just as well as
ad-hoc algorithms signal-dependent noise models. This explains why in the rest of this paper the
noise is assumed uniform, white and Gaussian, having previously applied, if necessary, a VST
to the noisy image. This also implies that we deal with raw images, namely images as close as
possible to the direct camera output before processing. Most reflex cameras, and many compact
cameras nowadays give access to this raw image.

But there is definitely a need to denoise current image formats, which have undergone unknown
alterations. For example, the JPEG-encoded images given by a camera contain a noise that has
been altered by a complex chain of algorithms, ending with lossy compression. Noise in such
images cannot be removed by the current state of the art denoising algorithms without a specific
adaptation. The key is to have a decent noise model. For this reason, the fundamentals to estimate
noise from a single image will be given in section 2.2.

2.2 Can noise be estimated from (just) one image?

Compared to the denoising literature, research on noise estimation is a poor cousin. Few papers
are dedicated to this topic. Among the recent papers one can mention [162], which argues that
images are scale invariant and therefore noise can be estimated by a deviation from this assumption.
Unfortunately this method is not easily extendable to estimate scale dependent or signal dependent
noise, like the one observed in most digital images in compressed format. As a rule of thumb, the
noise model is relatively easy to estimate when the raw image comes directly from the imaging
system, in which case the noise model is known and only a few parameters must be estimated.
For this, efficient methods are described in [68], [67] for Poisson and Gaussian noise.

In this short review we will focus on methods that allow for local, signal and scale dependent
noise. Indeed, one cannot denoise an image without knowing its noise model. It might be argued
that the noise model comes with the knowledge of the imaging device. Nevertheless, the major-
ity of images dealt with by the public or by scientists have lost this information. This loss is
caused by format changes of all kinds, which may include resampling, denoising, contrast changes
and compression. All of these operations change the noise model and make it signal and scale
dependent.

The question that arises is why so many researchers are working so hard on denoising models,
if their corpus of noisy images is so ill-informed.

It is common practice among image processing researchers to add the noise themselves to
noise-free images to demonstrate the performance of a method. This proceeding permits to reliably
evaluate the denoising performance, based on a controlled ground truth. Nevertheless the denoising
performance may, after all, critically depend on how well we are able to estimate the noise. Most
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Figure 2: Two examples of the ten noise-free images used in the tests: computer (left) and traffic
(right).

world images are actually encoded with lossy JPEG formats. Thus, noise is partly removed by the
compression itself. Furthermore, this removal is scale dependent. For example, the JPEG 1985
format divides the image into a disjoint set of 8 x 8 pixels blocks, computes their DCT, quantizes
the coefficients and the small ones are replaced by zero. This implies that JPEG performs a
frequency dependent threshold, equivalent to a basic Wiener filter. The same is true for JPEG
2000 (based on the wavelet transform).

In addition, the Poisson noise of a raw image is signal dependent. The typical image process-
ing operations, demosaicking, white balance and tone curve (contrast change) alter this signal-
dependency in a way which depends on the image itself.

In short:

the noise model is different for each image;

the noise is signal dependent;

the noise is scale dependent;

the knowledge of each dependence is crucial to denoise properly any given image which is
not raw, and for which the camera model is available.

Thus, estimating JPEG noise is a complex and risky procedure, as well explained in [95] and [94].
It is argued in [44] that noise can be estimated by involving a denoising algorithm. Again, this
procedure is probably too risky for noise and scale dependent signal.

This section, following [26], gives a concise review and a comparison of existing noise estimation
methods. The classic methods estimate white homoscedastic noise only, but they can be adapted
easily to estimate signal and scale dependent noise. To test the methods, a set of ten noise-free
images was used. These noiseless images were obtained by taking snapshots with a reflex camera
of scenes under good lighting conditions and with a low ISO level. This means that the number of
photons reaching each captor was very high, and the noise level therefore small. To reduce further
the noise level, the average of each block of 5 x 5 pixels was computed, reducing the noise by a
5 factor. Since the images are RGB, taking the mean of the three channels reduces the noise by
a further v/3 factor. The (small) initial noise was therefore reduced by a 5v/3 ~ 8.66 factor, and
the images can be considered noise-free. Two images from this noiseless set can be seen in fig. 2.
The size of each image is 704 x 469 pixels. For the uniform-noise tests, seven noise levels were
applied to these noise-free images: o € {1,2,5,10,20,50,80}. Fig. 3 shows the result of adding
white homoscedastic Gaussian noise with o € {1, 2, 5,10, 20, 50,80} to the noise-free image traffic.

This study on noise estimation proceeds as follows: we review in detail in section 2.3 the method
proposed in [26]. This method has all the features of the preceding methods, so we shall be able
to make a rash review of them (section 2.4), followed by an overall comparison of all methods,
at all noise levels. It follows that the Percentile method is the most accurate. Nevertheless, the
estimation of very low noises remains slightly inaccurate, with some 20% error for noises below 2.
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Figure 3: Result of adding white homoscedastic Gaussian noise with o € {2, 5,10, 20,50, 80} to
the noise-free image traffic. It may need a zoom in to perceive the noise for o = 2, 5.
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2.3 The Percentile method

The Percentile method, introduced in [126], is based on the fact that the histogram of the variances
of all blocks in an image is affected by the edges and textures, but this alteration appears mainly
on its rightmost part. The idea of the percentile method is to avoid the side effect of edges and
textures by taking the variance of a very low percentile of the block variance histogram, and
then to infer from it the real average variance of blocks containing only noise. This correction
multiplies this variance by a factor that only depends on the choice of the percentile and the block
size. As usual in all noise estimation methods, to reduce the presence of deterministic tendencies
in the blocks, due to the signal, the image is first high passed. The commonly used high pass
filters are differential operators or waveforms. The typical differential operators are directional
derivatives, the A (Laplace) operator, its iterations AA; AAA, ..., the wave forms are wavelet
or DCT coefficients. All of them are implemented as discrete stencils. Filtering the image with
such a local high pass filter operator removes smooth variations inside blocks, which increases
the number of blocks where noise dominates and on which the variance estimate will be reliable.
According to the performance tests, for observed & < 75 the best operator is the wave associated
to the highest frequency coefficient of the transformed 2D DCT-II block with support 7 x 7 pixels.
The coefficient X (6,6) of the 2D DCT-II of a 7 x 7 block P of the image is:

DCT(6,6) = 26: 26: For(n1) Fr(n2) P(ny, m2) cos {7; <n1 + ;) 6} cos {’7’ <n2 + ;) 6] .

ny =0 no =0

where
%,ifnz()
\/g,ifne{L...,ﬁ}

Therefore, the values of the associated discrete filter are

Fr(n) =

™

1 1
Fr(ny1)Fr(ng) cos [7 (m + 2) 6} cos [7; (ng + 2) 6} ,ni,n2 € {0,1,...,6}.

These values must of course be normalized in order to keep the standard deviation of the data, by
dividing each value by the root of the sum of the filter squared values.

The Percentile method computes the variances of overlapping w x w blocks in the high-pass
filtered image. The means of the same blocks are computed from the original image (before the
high pass). These means are classified into a disjoint union of variable intervals, in such a way
that each interval contains (at least) 42000 elements. These measurements permit to construct,
for each interval of means, a histogram of block variance of at least 42000 samples having their
means in the interval. In each such variance histogram the percentile value is computed. It was
observed that, for observed 6 < 75 and large images, the percentile p = 0.5%, a block size w = 21
and a 7 x 7 support for the DCT transform give the best results. If & > 75, the percentile that
should be used is the median, the block is still 21 x 21, but the support of the DCT should be
3 x 3.

This percentile value is of course lower than the real average block variance, and must be
corrected by a multiplicative factor. This correction only depends on the percentile, block size
and on the chosen high pass filter. Nevertheless, the constant is not easy to calculate explicitly,
but can be learnt from simulations. For the 0.5% percentile, 21 x 21 pixels blocks and the DCT
pre-filter operator with support 7 x 7, this empirical factor learnt on noise images was found to
be 1.249441884. In summary, to each interval of means, a standard deviation is associated. The
association mean—standard deviation yields a “noise curve” associated with the image. This noise
curve predicts for each observed grey level value in the image its most likely underlying standard
deviation due to noise. Optionally, the noise curve obtained on real images can be filtered. Indeed,
it may present some peaks when variances measured for a given grey level interval belong to a
highly-textured region. To filter the curve, the points that are above the segment that joins the
points on the left and on the right are back-projected on that segment. In general, no more than
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Image /6 [oc=1][0=2]0=5]0=10[0=20][0=50] 0 =230 |
bag 1.34 2.33 5.26 10.36 20.30 49.87 79.96
building1 1.12 2.17 5.24 10.14 20.48 50.19 80.45
computer 1.22 2.20 5.06 10.36 20.03 50.28 80.34

dice 1.11 2.00 5.01 10.03 20.02 49.95 79.79
flowers2 1.08 2.07 5.10 9.84 20.07 49.87 79.80
hose 1.15 2.13 5.10 10.15 20.06 49.99 79.99
leaves 1.51 2.43 5.38 10.29 19.82 50.07 80.04
lawn 1.57 2.50 5.57 10.48 20.42 50.05 79.92
stairs 1.42 2.27 5.19 10.15 19.96 49.92 79.93
traffic 1.25 2.35 5.33 10.61 20.64 50.10 80.29

Flat image | 0.99 2.00 5.09 9.77 19.91 50.12 79.73

Table 1: Percentile method results on eleven noiseless images with white homoscedastic Gaussian
noise added. The last image is simply flat. The real noise variance is o. The estimated value is &.
The noise estimation error is remarkably low on medium and large noise. It is nevertheless larger
on very small noise (a o = 2 noise is not visible with the naked eye). Indeed most photographed
objects have everywhere some micro-texture (except perhaps sometimes in the blue sky which
can be fully homogeneous). Such micro-textures are widespread and hardly distinguishable from
noise. The parameters of the method are a 0.5% percentile, a 21x21 pixels block size, and the
DCT has support 7 x 7. These parameters are valid if 6 < 75. If 6 > 75, the best parameters
are: a H0% percentile, a 21x21 pixels block size and a DCT with support 3 x 3. Estimating
the best parameters therefore requires a first estimation followed by a second one with the right
parameters.

two filtering iterations are needed. For the comparative tests presented here, the curves were not
filtered at all.

The pseudo-code for the percentile method is given in Algo. 2 and the results for the white
homoscedastic Gaussian noise in Table 1. When the image is tested for white homoscedastic
Gaussian noise, only one interval for all grey level means is used, whereas in the signal-dependent
noise case, the grey level interval is divided into seven bins.
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Algorithm 2 Percentile method algorithm.
PERCENTILE - Returns a list that relates the value of the image signal with its noise level.
Input @ noisy image. Input b: number of bins. Input w x w: block dimensions Input
p: percentile. Input filt: filter iterations. Output (M, S): list made of pairs (mean, noise
standard deviation) for each bin of grey level value.

h = FILTER(@). Apply high-pass filter to the image.

a,v =MEAN _FILTERED_VARIANCE(4, h,w). Obtain the list of the block averages (in the
original image @) and of the variances (of the filtered image h) for all w x w blocks.

Divide the block mean value list a into intervals (bins), having all the same number of elements.
Keep for each interval the corresponding values in v.

S=0; M =0.
for each bin do
v = Per(bin, p). Get the p-percentile v of the block variances whose means belong to this bin.
m = Mean|[Per(bin, p)]. Get the mean of the block associated to that percentile.
S« y/v. Store the standard deviation &.
M «— m. Store mean.

end for
S. = 0. Corrected values.
for s € S do

Apply correction C' according to p, w and filter operator used.
s = C's. Correct direct estimate.
S, «— s.
end for
for k=1... filt do
Sc[k] = FILTER(S,[k], filt). Filter the noise curve filt times.
end for
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Figure 4: Mosaic used to learn the correction values in the Percentile method.

The Percentile method with learning The percentile method with learning is essentially
the same algorithm explained in section 2.3, with the difference that it tries to compensate the
bias caused by edges and micro-texture in the image by learning a relationship between observed
values & and noise real values o. The difference value f(o) = 6 — o is called the correction, that is,
the value that must be subtracted from the direct estimate & without correction to get the final
estimate (which we shall still call & ~ ). These corrections depend on the structure of real images.
A mosaic of several noise-free images is shown in Fig. 4. Simulated noise of standard deviations
0 =0,...,100 was added to these noiseless images. These images were selected randomly from
a large database, to be statistically representative of the natural world, with textures, edges, flat
regions, dark and bright regions. The correction learnt with these images is intended to be an
average correction, that works for a broad range of natural images. It should of course be adapted
to any particular set of images. Furthermore, the correction depends on the size of the image, and
must be learnt for each size.

When the observed noise level is high enough (6 > 10 for pixel intensities u € {0,1,...255}),
the image gets dominated by the noise, that is, most of the variance measured is due to the noise
and not due to the micro-textures and edges. It is therefore convenient to avoid applying the learnt
corrections to direct estimates 6 when 6 > 10. Thus, for 6 > 10, only the percentile correction
is applied. Table 2 shows the & values estimated with the Percentile with learning method. The
correction learnt with the mosaic is only applied for o € {1,2,5,10}.

2.4 A crash course on all other noise estimation methods

It is easier to explain the other methods after having explained in detail, as we did above, one
method, namely the percentile method. Most noise estimation methods share the following fea-
tures:

e they start by applying some high pass filter, which concentrates the image energy on bound-
aries, while the noise remains spatially homogeneous;

e they compute the energy on many blocks extracted from this high-passed image;

e they estimate the noise standard deviation from the values of the standard deviations of the
blocks

e to avoid blocks contaminated by the underlying image, a statistics robust to (many) outliers
must be applied. The methods therefore use the flattest blocks, which belong to a (low)
percentile of the histogram of standard deviations of all blocks.

Table 3 shows a classification of the methods according the preceding criteria:
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Image /6 [0=1[0=2]0=5[0=10]0=20]0=50] 0 =280 |
bag 1.15 2.11 5.05 10.26 20.06 49.68 80.05
building1 0.95 1.97 5.00 10.42 20.32 49.99 80.27
computer 1.04 2.00 4.88 10.39 20.13 50.29 80.16

dice 0.91 1.84 4.81 10.01 19.90 49.76 79.60
flowers2 0.92 1.88 4.87 9.47 20.00 49.48 79.67
hose 0.99 1.93 4.89 10.08 19.97 49.73 79.71
leaves 1.36 2.26 5.17 10.28 20.03 49.80 79.92
lawn 1.35 2.29 5.36 10.37 20.26 50.07 79.88
stairs 1.20 2.10 4.95 10.11 20.10 49.92 79.86
traffic 1.04 2.06 5.06 10.75 20.64 49.91 80.05

Flat image | 0.84 1.82 4.84 10.02 20.13 50.13 79.44

Table 2: Percentile with learning method results with white homoscedastic Gaussian noise added.
The correction learnt with the mosaic is only applied for ¢ € {1,2,5,10}. This method, being
local on blocks, extends immediately to estimate signal dependent noise and the performance is
similar [26].

The first column is the choice of the high-pass filter, which can be a discrete differential operator
of order two (ag—;y) in the Estimation of Image Noise Variance (E.ILN.V.) method [130]). It is
obtained as a composition of two forward discrete differences. Then we have a discrete Laplacian
A [120] obtained as the difference between the current pixel value and the average of a discrete
neighborhood, an order order three operator (a difference A; — Ay of two different discretizations
of the Laplacian [77]), a wave associated to a DCT coefficient [26], and sometimes a nonlinear
discrete differential operator like in the Median method [120], which uses the difference between
the image and its median value on a 3 x 3 block, thus equivalent to the curvature operator curv.
The high-pass filter is previously applied to all pixels of the image. In the case of the DCT
[127] the DCT is applied to a block centered on the reference pixel, and the highest frequency
coefficients, for example DCT(6,7), DCT(7,6), DCT(7,7), are kept. The most primitive methods,
the Block [89, 111], the Pyramid [113] and the Scatter method [88] do not apply any high pass
filter. Nevertheless, since they compute block variances, they implicitly remove the mean from
each block, which amounts to applying a high-pass filter of Laplacian type.

The second column gives the size of the block on which the standard deviation of the high-
passed image is computed, which varies from 1 to 21. The pyramid method [113] uses standard
deviations of blocks of all sizes and is unclassifiable. Two methods, F.N.V.E. [77] and the Gradient
method [12, 145] do not compute any block standard deviation of the high-passed image before
the final estimation.

The last column gives the value of the (low) percentile on which the block standard deviation
are computed. When the slot contains “all”, this means that the estimator is taking into account
all the values.

The third column characterizes the estimator, for which there are several variants. The three
compared percentile methods [26] use a very low percentile 0.5% of the block standard deviations.
The Average, Median [120] and Block method [89, 111] use an 1% percentile of the gradient to
select the blocks which variance is kept, while the high pass image is a higher order differential
operator. The Pyramid [113] is instead quite complex, but uses overall all standard deviations
of all possible blocks in the image. We give up giving its detailed algorithm. The F.N.V.E. [77]
method has actually no outlier elimination, taking simply the root mean square of all samples of
the high-passed image.

Rather than using a percentile of the block variance histogram followed by a compensation
factor, several methods extract a mode, considering that the mode (peak of the histogram variance)
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Method percentile

Hi-pass \ Block \ estimator

Perc. learn. [26, 126] | DCT 7 x 7 | 21 block dev. at perc. 0.5%

Percentile [26, 126] DCT7x7 |21 block dev. at perc. 0.5%

Block [89, 111] none 7 mean of block dev 1%

Average [120] A 3 mean of block dev 1% of grad. hist.
Median [120] curv 3 mean of block dev 1% of grad. hist.
Scatter [88] none 8 block dev at block dev mode
Gradient [12, 145] \% 1 |V| mode all

E.IN.V. [130] 82;; 3 deconv. of block dev. | all

F.N.V.E. [77] ARy 1 RMS all

DCT-MAD [53] 3-DCT 8 MAD of 3 DCT coef | all

DCT-mean [127] 3-DCT 8 mean of variances all

Pyramid [113] none 2L block dev complex

Table 3: Table summarizing all methods. The abbreviation “block dev.” means standard deviation
of block, “at perc 1%” means that the chosen value is the one at which the 1% percentile is
attained. “3-DCT” means the three highest frequency coefficients, namely DCT(6,7), DCT(7,6),
DCT(7,7). “DCT 7 x 7" means the DCT wave associated to the highest frequency coefficient of
the 7 x 7 pixels support of the DCT-II transform of the block. MAD stands for median of absolute
deviation (it is applied to the three DCT coefficients for all blocks.) The methods belong to three
classes. The first main class (rows 1 to 5) does: high pass+ standard deviation of blocks+ low
percentile. The second class (rows 6-7) replaces the percentile by a mode of the high-pass filter
histogram. The rows 8-9-10-11 are more primitive and do a simple mean of the block variances of
the high-pass filtered image. The last method is unclassifiable, and performs poorly.

must correspond to the noise. The Gradient method [12, 145] takes for ¢ the peak of the modulus
of the gradient histogram. The Scatter [88] method, which also computes a mode when estimating
white homoscedastic noise, namely the value at which the peak of the block standard deviations
histogram is attained. The E.I.N.V. [130] method does a sort of iterative deconvolution of the
histogram of block variances and also extracts its mode.

All of the values obtained by these methods are proportional to the noise standard deviation
when the image is a white noise. Thus the final step, not mentioned in the table, is to apply a
correction factor to get the final estimated noise standard deviation, as explained in the percentile
method (sec. 2.3).

The comparison of the methods which use the highest DCT coefficients, DCT-mean [127] and
DCT-MAD [53] where MAD stands for median value of absolute deviations, shows clearly the
win with a robust estimator: the estimation is obtained by averaging the three MAD (median of
absolute deviation) of the three highest frequency DCT coefficients for all blocks.

The ultimate choice for the methods is of course steered by their RMSE, namely the root
mean square error between the estimated value of o and o itself, taken over a representative set
of images. As Table 4 shows the ordering of methods by their RMSE is coherent and points to
the percentile method as the best one. This method is still improved by learning. A good point
justifying all methods is that they perform satisfactorily for all large noise values, down to o = 20.
But, with the exception of the Percentile method with learning, no method performs acceptably
for o < 5.
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Method c=1|0c=2 |0o=5|0c=10|06=20| 0c=501| 0c=80

Percentile 0.309 | 0.276 | 0.265 | 0.315 | 0.293 | 0.130 | 0.229
Percentile learning | 0.182 | 0.152 | 0.157 | 0.364 0.240 0.248 0.270
Block 1.093 | 0.961 | 0.949 | 1.056 0.984 0.922 0.840
Average 2.669 | 2.556 | 2.375 | 2.165 1.771 1.227 0.874
Median 2.841 | 2.762 | 2.640 | 2.460 2.110 1.684 1.502
Scatter 4.533 | 4.013 | 3.141 | 2.290 1.436 1.488 1.862
Gradient 1.887 | 1.851 | 1.474 | 1.393 1.354 1.234 2.949
E.ILN.V. 1.406 | 1.159 | 0.924 | 0.842 0.656 0.450 0.557
F.N.V.E. 2.738 | 2.231 | 1.357 | 0.767 0.397 0.196 | 0.225
DCT-MAD 0.858 | 0.721 | 0.533 | 0.356 | 0.239 | 0.296 0.583
DCT-mean 1.895 | 1.469 | 0.837 | 0.462 0.316 0.355 0.726

Table 4: White homoscedastic Gaussian noise RMSE results for all methods and for varying o. The
Pyramid tests were omitted, being incomplete. Being obtained as an average on many noiseless
images, the differences have been checked to be statistically significant. It is also apparent that
the ranking of the compared methods may vary with the amount of noise. Nevertheless, the ranks
of methods for noises larger than 20 is irrelevant, because all of them work at an acceptable level
of precision. Thus, this ranking is mainly relevant for low noise levels, o = 1,2, 5, 10.
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3 Four denoising principles

In this section, we will review the main algorithmic principles which have been proposed for
noise removal. All of them use of course a model for the noise, which in our study will always
be the Gaussian white noise. More interestingly, each principle implies a model for the ideal
noiseless image. The Bayesian principle is coupled with a Gaussian (or a mixture of Gaussians)
model for noiseless patches. Transform thresholding assumes that most image coefficients are
high and sparse in a given well-chosen orthogonal basis, while noise remains white (and therefore
with homoscedastic coefficients in any orthogonal basis). Sparse coding assumes the existence of
a dictionary of patches on which most image patches can be decomposed with a sparse set of
coefficients. Finally the averaging principle relies on an image self-similarity assumption. Thus
four considered denoising principles are:

e Bayesian patch-based methods (Gaussian patch model);
e transform thresholding (sparsity of patches in a fixed basis);
e sparse coding (sparsity on a learned dictionary);

e pixel averaging and block averaging (image self-similarity).

As we will see in this review, the current state of the art denoising recipes are actually a smart
combination of all of these ingredients.

3.1 Bayesian patch-based methods

Given u the noiseless ideal image and @ the noisy image corrupted with Gaussian noise of standard
deviation o so that

i =u+n, (2)
the conditional distribution P(@ | u) is
P | ) = —— e Q
U|lu)=——=€ 27 |
(2m02) %

where M is the total number of pixels in the image.

In order to compute the probability of the original image given the degraded one, P(u | @),
we need to introduce a prior on w. In the first models [69], this prior was a parametric image
model describing the stochastic behavior of a patch around each pixel by a Markov random field,
specified by its Gibbs distribution. A Gibbs distribution for an image u takes the form

P(u) = E(;E(u)/T7

where Z and T are constants and E is called the energy function and writes

E(u) =Y _ Vo(u),

ceC

where C denotes the set of cliques associated to the image and V¢ is a potential function. The
maximization of the a posteriori distribution writes by Bayes formula

ArgmaxP(u | @) = ArgmaxP(a | u)P(u),
which is equivalent to the minimization of —logP(u | @),
2 2
Argmin ||u — a||* + %E(u)

This energy writes as a sum of local derivatives of pixels in the image, thus being equivalent to a
classical Tikhonoff regularization, [69] and [13].
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Recent Bayesian methods have abandoned as too simplistic the global patch models formulated
by an a priori Gibbs energy. Instead, the methods build local non parametric patch models learnt
from the image itself, usually as a local Gaussian model around each given patch, or as a Gaussian
mixture. The term “patch model” is now preferred to the terms “neighborhood” or “clique”
previously used for the Markov field methods. In the nonparametric models, the patches are
larger, usually 8 x 8, while the cliques were often confined to 3 x 3 neighborhoods. Given a
noiseless patch P of u with dimension k X k, and P an observed noisy version of P, the same
model gives by the independence of noise pixel values

|1 B—P|2

P(P|P)=c-e 22 (4)

where P and P are considered as vectors with x* components and ||P|| denotes the Euclidean
norm of P. Knowing P, our goal is to deduce P by maximizing P(P|P). Using Bayes’ rule, we
can compute this last conditional probability as

P(P|P)P(P)

BPIP) = =55 o)

P being observed, this formula can in principle be used to deduce the patch P maximizing the
right term, viewed as a function of P. This is only possible if we have a probability model for
P, and these models will be generally learnt from the image itself, or from a set of images. For
example [33] applies a clustering method to the set of patches of a given image, and [161] applies it
to a huge set of patches extracted from many images. Each cluster of patches is thereafter treated
as a set of Gaussian samples. This permits to associate to each observed patch its likeliest cluster,
and then to denoise it by a Bayesian estimation in this cluster. Another still more direct way to
build a model for a given patch P is to group the patches similar to P in the image. Assuming
that these similar patches are samples of a Gaussian vector yields a standard Bayesian restoration
[86]. We shall now discuss this particular case, where all observed patches are noisy.

Why Gaussian? As usual when we dispose of several observations but of no particular guess
on the form of the probability density, a Gaussian model is adopted. In the case of the patches Q
similar to a given patch P, the Gaussian model has some pertinence, as it is assumed that many
contingent random factors explain the difference between Q and P: other details, texture, slight
lighting changes, shadows, etc. The Gaussian model in presence of a combination of many such
random and independent factors is heuristically justified by the central limit theorem. Thus, for
good or bad, assume that the patches @ similar to P follow a Gaussian model with (observable,
empirical) covariance matrix Cp and (observable, empirical) mean P. This means that

(@-Ptcp'(@-P)

P@Q) =ce—F (6)
From (3) and (5) we obtain for each observed P the following equivalence of problems:

max P(P|P) & max P(P|P)P(P)

_up—p2  (P-Pleplr-F)
& maxe 202 e 2
P
|IP— P et

This expression does not yield an algorithm. Indeed, the noiseless patch P and the patches similar
to P are not observable. Nevertheless, we can observe the noisy version P and compute the
patches Q similar to P. An empirical covariance matrix can therefore be obtained for the patches
Q similar to P. Furthermore, using (2) and the fact that P and the noise n are independent,

C;=Cp+7°;, EQ=P. (7)
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Notice that these relations assume that we searched for patches similar to P at a large enough
distance, to include all patches similar to P, but not too large either, because otherwise it can
contain outliers. Thus the safe strategy is to search similar patches in a distance slightly larger than
the expected distance caused by noise. If the above estimates are correct, our MAP (maximum
a posteriori estimation) problem finally boils down by (7) to the following feasible minimization
problem: R
\P— P

~ . - 2 _1 -
max P(P|P) min p (P— P)t(Cls —oI)" (P - P).

Differentiating this quadratic function with respect to P and equating to zero yields
P—P+o*Cp— o 1)"(P—P)=0.

Taking into account that I+ 02(Cp — o?I)~! = (Cp — 02I)71Cp, this yields

(Cp —’1)"'CsP = P+ 0*(Cp — o’I)"'P.
and therefore
P = C;(Cp-o’I)P+0°C;'P
= P+0%C; (P~ P)
— P+ [1_0201—;} (P - P)
= P+[Cp—o]C(P - P)

Thus we have proved that a restored patch Py can be obtained from the observed patch P by the
one step estimation

P =P+ [Cp 0’| C51 (P~ P), (8)

which resembles a local Wiener filter.

Remark 1. It is easily deduced that the expected estimation error is

I -1
1
(Cfﬂ %2)

Sections 5.2, 5.3, 5.4, 5.5, 5.6, 5.9 will examine not less than six Bayesian algorithms
deriving patch-based denoising algorithms from variants of (8). The first question when looking
at this formula is obviously how the matrix Cp can be learnt from the image itself. Each method
proposes a different notion to learn the patch model.

Of course, other, non Gaussian, Bayesian models are possible, depending on the patch density
assumption. For example [132] assumes a local exponential density model for the noisy data, and
gives a convergence proof to the optimal (Bayes) least squares estimator as the amount of data
increases.

E||P— P> =Tr

3.2 Transform thresholding

Classical transform coefficient thresholding algorithms like the DCT or the wavelet denoising use
the observation that images are faithfully described by keeping only their large coeflicients in a
well-chosen basis. By keeping these large coefficients and setting to zero the small ones, noise
should be removed and image geometry kept. By any orthogonal transform, the coefficients of
an homoscedastic de-correlated noise remain de-correlated and homoscedastic. For example the
wavelet or the DCT coefficients of a Gaussian white noise with variance o2 remain a Gaussian
diagonal vector with variance o2. Thus, a threshold on the coefficients at, say, 3c removes most
of the coefficients that are only due to noise. (The expectation of these coeflicients is assumed to
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be zero.) The sparsity of image coefficients in certain bases is only an empirical observation. It
is nevertheless invoked in most denoising and compression algorithms, which rely essentially on
coefficient thresholds. The established image compression algorithms are based on the DCT (in
the JPEG 1992 format) or, like the JPEG 2000 format [4], on biorthogonal wavelet transforms
[35].

Let B = {G;}}, be an orthonormal basis of RM, where M is the number of pixels of the noisy
image U (in staircase to recall that it is handled here as a vector). Then we have

(U,Gy) = (U,Gyi) + (N,Gy), (9)

where U, U and N denote respectively the noisy, original and noise images. We always assume
that the noise values N(i) are uncorrelated and homoscedastic with zero mean and variance 2.
The following calculation shows that the noise coefficients in the new basis remain uncorrelated,

with zero mean and variance o2

E[(N,G3) (N, Gj)] = ) Gi(r)G;(s)Elw(r)w(s)]

r,s=1

= <Gi,Gj>O'2 = 0'2(5[j — ’L]

Each noisy coefficient <U , G;) is modified independently and then the solution is estimated by the
inverse transform of the new coefficients. Noisy coefficients are modified by multiplying by an
attenuation factor a(7) and the inverse transform yields the estimate

DU = a(i) (U,G;) G;. (10)

D is also called a diagonal operator. Noise reduction is achieved by attenuating or setting to zero
small coefficients of order o, assumedly due to noise, while the original signal is preserved by
keeping the large coefficients. This intuition is corroborated by the following result.

Theorem 1. The operator D,y minimizing the mean square error (MSE),
D,y = argmli)n E{||U - DU||2}

is given by the family {a(i)};, where

: (U, G:)?
_ 11
“O=Tw.eip+o -
and the corresponding expected mean square error (MSE) is
M
- U,G)|?0?
E{||U — D,y U|*} = 0. Gi)[Fo” 12

The previous optimal operator attenuates all noisy coefficients. If one restricts a() to be 0
or 1, one gets a projection operator. In that case, a subset of coefficients is kept, and the rest are
set to zero. The projection operator that minimizes the MSE under that constraint is obtained

with
. ]- |<U7G’L>|2 Z 023
a(i) = .
0 otherwise

and the corresponding MSE is

E{|U ~DinsU|*} = meuw, Gi)l?, o%). (13)
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A transform thresholding algorithm therefore keeps the coefficients with a magnitude larger than
the noise, while setting the zero the rest. Note that both above mentioned filters are “ideal”,
or “oracular” operators. Indeed, they use the coefficients (U, G;) of the original image, which
are not known. These algorithms are therefore usually called oracle filters. We shall discuss their
implementation in the next sections. For the moment, we shall introduce the classical thresholding
filters, which approximate the oracle coefficients by using the noisy ones.

We call, as is classical, Fourier—Wiener filter the optimal operator (11) when B is a Fourier
basis. By the use of the Fourier basis, global image characteristics may prevail over local ones and
create spurious periodic patterns. To avoid this effect, the bases are usually more local, of the
wavelet or block DCT type.

Sliding window DCT. The local adaptive filters were introduced by Yaroslavsky and Eden [152]
and Yaroslavsky [154]. The noisy image is analyzed in a moving window, and at each position
of the window its DCT spectrum is computed and modified by using the optimal operator (11).
Finally, an inverse transform is used to estimate only the signal value in the central pixel of the
window.

This method is called the empirical Wiener filter, because it approximates the unknown original
coefficients (u, G;) by using the identity

E\U,G)? = |(U.G)* + o

and thus replacing the optimal attenuation coefficients a(i) by the family {«(4)},,

a(i) = max {O W} .
LGP

where c is a parameter, usually larger than one.

Wavelet thresholding. Let B = {G;}; be a wavelet orthonormal basis [107]. The so-called hard
wavelet thresholding method [54] is a (nonlinear) projection operator setting to zero all wavelet co-
efficients smaller than a certain threshold. According to the expression of the MSE of a projection
operator (13), the performance of the method depends on the ability of the basis to approximate
the image U by a small set of large coefficients. There has been a strenuous search for wavelet
bases adapted to images [124].

Unfortunately, not only noise, but also image features can cause many small wavelet coefficients,
which are nevertheless lower than the threshold. The brutal cancelation of wavelet (or DCT)
coeflicients near the image edges creates small oscillations, a Gibbs phenomenon often called
ringing. Spurious wavelets can also be seen in flat parts of the restored image, caused by the
undue cancelation of some of the small coefficients. These artifacts are sometimes called wavelet
outliers [55]. These undesirable effects can be partially avoided with the use of a soft thresholding
52],

(U,Gi)=sgn({U,Gi))u TGN >
a(i) = (0,Gi) - TGz e
0 otherwise,

The continuity of this soft thresholding operator reduces the Gibbs oscillation near image discon-
tinuities.

Several orthogonal bases adapt better to image local geometry and discontinuities than wavelets,
particularly the “bandlets” [124] and “curvelets” [139]. This tendency to adapt the transform
locally to the image is accentuated with the methods adapting a different basis to each pixel, or
selecting a few elements or “atoms” from a huge patch dictionary to linearly decompose the local
patch on these atoms. This point of view is sketched in the next section on sparse coding.
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3.3 Sparse coding

Sparse coding algorithms learn a redundant set D of vectors called dictionary and choose the right
atoms to describe the current patch.

For a fixed patch size, the dictionary is encoded as a matrix of size k2 X ng;., where 2 is the
number of pixels in the patch and ng;. > 2. The dictionary patches, which are columns of the
matrix, are normalized (in Euclidean norm). This dictionary may collect usual orthogonal bases
(discrete cosine transform, wavelets, curvelets ...), but also patches extracted (or learnt) from clean
images or even from the noisy image itself.

The dictionary permits to compute a sparse representation « of each patch P, where « is a
coefficient vector of size n?,, satisfying P ~ Da. This sparse representation  can be obtained with
an ORMP (orthogonal recursive matching pursuit) [37]. ORMP gives an approximate solution to
the (NP-complete) problem

Argmin||a|lo such that [P — Dal3 < x*(Co)? (14)
«

where ||a||o refers to the [° norm of a, i.e. the number of non-zero coefficients of «. This last
constraint brings in a new parameter C. This coefficient multiplying the standard deviation o
guarantees that, with high probability, a white Gaussian noise of standard deviation o on x? pixels
has an [? norm lower than kCo. The ORMP algorithm is introduced in [37]. Details on how this
minimization can be achieved are given in the section describing the K-SVD algorithm 5.7. (It
has been argued that the (° norm of the set of coefficients can be replaced by the much easier I*
convex norm. This remark is the starting point of the compressive sampling method [29].)

In K-SVD and other current sparse coding algorithms, the previous denoising strategy is used
as the first step of a two-steps algorithm. The selection step is iteratively combined with an update
of the dictionary taking into account the image and the sparse codifications already computed.
More details will be found in section 5.7 on the K-SVD algorithm.

Several of our referees have objected to considering sparse coding and transform thresholding as
two different denoising principles. As models, both indeed assume the sparsity of patches in some
well chosen basis. Nevertheless, some credit must be given to historical development. The notion
of sparsity is associated with a recent and sophisticated variational principle, where the dictionary
and the sparse decompositions are computed simultaneously. Transform thresholding methods
existed before the term sparsity was even used. They simply pick a local wavelet or DCT basis
and threshold the coefficients. In both algorithms, the sparsity is implicitly or explicitly assumed.
But transform threshold methods use orthogonal bases, while the dictionaries are redundant.
Furthermore, the algorithms are very different.

3.4 Image self-similarity leading to pixel averaging

The principle of many denoising methods is quite simple: they replace the colour of a pixel with an
average of the colours of nearby pixels. It is a powerful and basic principle, when applied directly
on noisy pixels with independent noise. If m pixels with the same colour (up to the fluctuations
due to noise) are averaged the noise is reduced by a \/m factor.

The MSE between the true (unknown) value u(i) of a pixel i and the value estimated by a
weighted average of pixels j is

Ellu) =Y w@®a()®> = E|Y_ wi)(ud) —u@) =D win@)|?
J J J
= > w(i)’(uld) —u(@)® + 0 Y w(i)?, (15)
J J
where we assume that the noise, the image and the weights are independent and that the weights

{w(3)} satisty 3, w(i) = 1.
The above expression implies that the performance of the averaging depends on the ability to
find many pixels j with an original value u(j) close to u(i). Indeed, the variance term }_; w(j)?
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is minimized by a flat distribution probability w(j) = 1/m, where m is the number of averaged
pixels. The first term measures the bias caused by the fact that pixels do not have exactly the
same deterministic value. Each method must find a tradeoff between the bias and variance terms
of equation (15).

Averaging of spatially close pixels A first rather trivial idea is to average the closest pixels
to a given pixel. This amounts to convolve the image with a fixed radial positive kernel. The
paradigm of such kernels is the Gaussian kernel.

The convolution of the image with a Gaussian kernel ensures a fixed noise standard deviation
reduction factor that equals the kernel standard deviation. Yet, nearby pixels do not necessarily
share their colours. Thus, the first error term in (15) can quickly increase. This approach is valid
only for pixels for which the nearby pixels have the same colour, that is, it only works inside the
homogeneous image regions, but not for their boundaries.

Averaging pixels with similar colours A simple solution to the above mentioned dilemma is
given by the sigma-filter [90] or neighborhood filter [153]. These filters average only nearby pixels
of i having also a similar colour value. We shall denote these filters by YNF', (for Yaroslavsky
neighborhood filter). Their formula is simply

S 1 e _lam-—awW?
YNF}, pu(i) = ) Z a(j)e n (16)
J€B,(i)

where B,(i) is a ball of center i and radius p > 0, h > 0 is the filtering parameter and C(i) =
laG) —a@)|?
Zje B, ¢ e is the normalization factor. The parameter h controls the degree of colour

similarity needed to be taken into account in the average. According to the Bayesian interpretation
of the filter we should have h = o. The filter (16), due to Yaroslavsky and Lee, has been reinvented
several times, and has received the alternative names of SUSAN filter [138] and of Bilateral filter
[142]. The relatively minor difference in these algorithms is that instead of considering a fixed
spatial neighborhood B, (i), they weigh the spatial distance to the reference pixel i by a Gaussian.

Neighborhood filters choose the “neighboring” pixels by comparing their noisy colour. The
weight distribution is therefore computed by using noisy values and is not independent of the
noise. Therefore the error formula (15) is not applicable. For a flat zone and for a given pixel with
colour value a, the nearby pixels with an intensity difference lower than h will be independent
and identically distributed with a probability distribution which is the restriction of the Gaussian
to the interval (a — h,a + h). If the search zone (or spatial neighborhood) is broad enough, then
the average value will tend to the expectation of this random variable. Thus, the increase of
the search zone and therefore of the number of pixels being averaged beyond a reasonable value
will not increase the noise reduction capability of the filter. More precisely, the asymptotic noise
reduction factor is given in the next theorem, taken from [15].

Theorem 2. Assume that n(3) are i.i.d. with zero mean and variance o2, then a noise n filtered

by the neighborhood filter YNF}, satisfies
hy\ o
Var YNFyp ,n = f| = | o7,
o

where

a2

1 1 xa a+x)? -
fw) = (2m)3/2 /Rﬁ2(a,x) (€2 — 1)%el*T) e da

and

G
ﬁ(a,x)z\/—?r/ e /24t
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The function f(x) is a decreasing function with f(0) = 1 and lim,_,+ f(2) = 0 (see plot in Fig.
5). The noise reduction increases with the ratio h/o. We see that f(z) is close to zero for values
of x over 2.5 or 3, that is, values of h over 2.5¢0 or 3¢. This corresponds to the values proposed
in the original papers by Lee and Yaroslavsky. However, for a Gaussian variable, the probability
of observing values at a distance to the average above 2.5 or 3 times the standard deviation is
very small. Thus, taking these large values excessively increases the probability of mismatching
pixels belonging in fact to other objects. This explains the observed decaying performance of
the neighborhood filter when the noise standard deviation or the search zone B(i, p) increase too
much.

Figure 5: Noise reduction function f(x) given by Theorem 2.

The image model underlying neighborhood filters is the image self-similarity, namely the pres-
ence in the image of pixels j which have the same law as i. We will introduce in section 5.1 the
NL-means algorithm [17] which can be seen as an extension of the neighborhood filters attenuating
their main drawbacks. In NL-means, the “neighborhood of a pixel i” is defined as any set of pix-
els j in the image such that a patch around j looks like a patch around i. In other terms NL-means
estimates the value of i as an average of the values of all the pixels j whose neighborhood looks
like the neighborhood of i.

4 Noise reduction, generic tools

This section a describes four generic tools that permit to increase the performance of any denoising
principle. We shall illustrate them on DCT denoising. Starting from the application of a simple
DCT transform threshold, the four generic tools will applied successively. We shall observe a
dramatic improvement of the denoising performance. This observation is valid for all denoising
principles.

4.1 Aggregation of estimates

Aggregation techniques combine for any pixel a set of m possible estimates. If these estimates
were independent and had equal variance, then a uniform average would reduce this estimator
variance by a factor m. Such an aggregation strategy was the main proposition of the translation
invariant wavelet thresholding algorithm [36]. This method denoises several translations of the
image by a wavelet thresholding algorithm and averages these different estimates once the inverse
translation has been applied to the denoised images.

An interesting case is when one is able to estimate the variance of the m estimators. Statistical
arguments lead to attribute to each estimator a weight inversely proportional to its variance [118].
For most denoising methods the variance of the estimators is high near image edges. When applied
without aggregation, the denoising methods leave visible “halos” of residual noise near edges. For
example in the sliding window DCT method, patches containing edges have many large DCT
coefficients which are kept by thresholding. In flat zones instead, most DCT coefficients are
canceled and the noise is completely removed. The proposition of [71] is to use the aggregation
for DCT denoising, approximating the variance of each estimated patch by the number of non

27



zero coefficients after thresholding. In the online paper [72] one can test an implementation of
DCT denoising. It actually uses an aggregation with uniform weights: “translation invariant DCT
denoising is implemented by decomposing the image to sliding overlapping patches, calculating the
DCT denoising in each patch, and then aggregating the denoised patches to the image averaging the
overlapped pixels. The translation invariant DCT denoising significantly improves the denoising
performance, typically from about 2 to 5 dB, and removes the block artifact”.

The same risk of “halo” occurs with non-aggregated NL-means (section 5.1), since patches
containing edges have many less similar instances in the image than flat patches. Thus the non-
local averaging is made over less samples, and the final result keeps more noise near image edges.
The same phenomenon occurs with BM3D (section 5.8) if the aggregation step is not applied [39].
As a consequence, an aggregation step is applied in all patch-based denoising algorithms. This
weighted aggregation favors, at each pixel near an edge, the estimates given by patches which
contain the pixel but do not meet the edge.

Aggregation techniques aim at a superior noise reduction by increasing the number of values
being averaged for obtaining the final estimate or selecting those estimates with lower variance.
Kervrann et al [82] considered the whole Bias+Variance decomposition in order to also adapt the
search zone of neighborhood filters or of NL-means. Since the bias term depends on the original
image, it cannot be computed in practice, and Kervrann et al. proposed to minimize both bias
and variance by choosing the smallest spatial neighborhood attaining a stable noise reduction.

Another type of aggregation technique considers the risk estimate rather than the variance to
locally attribute more weight to the estimators with small risks. In [144], Van De Ville and Kocher
give a closed form expression of Stein’s Unbiased Estimator of the Risk (SURE) for NL-Means.
(See also generalizations of the SURE estimator to the non-Gaussian case in [131].) The aim is
to select globally the best bandwidth for a given image. In [56], Duval et al. also use the SURE
technique for minimizing the risk by selecting locally the bandwidth. Deledalle et al. [48] apply
the same technique for combining the results of NL-means with different window sizes and shapes.
A similar treatment can be found in [132], but with the assumption of a local exponential density
for the noisy patches.

4.2 TIteration and “oracle” filters

Iterative strategies to remove residual noise would drift from the initial image. Instead, a first step
denoised image can be used to improve the reapplication of the denoising method to the initial
noisy image. In a second step application of a denoising principle, the denoised DCT coefficients, or
the patch distances, can be computed in the first step denoised image. They are an approximation
to the true measurements that would be obtained from the noise-free image. Thus, the first step
denoised image is used as an “oracle” for the second step.

For averaging filters such as neighborhood filters or NL-means, the image u can be denoised
in a first step by the method under consideration. This first step denoised image denoted by
11 is used for computing more accurate colour distances between pixels. Thus, the second step

neighborhood filter is
1

lag () —aq (]2
YNEnpill) = Gy Z. a(e o,
J€B,(J)
where 4 is the observed noisy image and 4; the image previously denoised by (16).

Similarly, for linear transform Wiener-type methods, the image is first denoised by its classical
definition, which amounts to approximate the oracle coefficients of Theorem 1 using the noisy ones.
In a second iteration, the coefficients of the denoised image approximate the true coefficients of
the noise-free image. Thus, the second step filter following the first step (10) is

(U1, Gy)|?

DU = a(i) (U,G;) G;, with a(i) = ——22 "1
2; () ( ) (4) TG 1 o2

where Ql is the denoised image by applying a first time the thresholding algorithm to the observed
image U.
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Alternatives and extensions: “twicing” and Bregman iterations In the recent review
paper [116], many denoising operators are formalized in a general linear framework, noting that
they can be associated with a doubly stochastic diffusion matrix W with nonnegative coefficients.
For example in NL-means, this matrix is obtained by the symmetrization of the matrix of the
NL-means weights wp 5 defined in Algorithm 1. Unless it is optimal, as is the case with an ideal
Wiener filter, the matrix W associated with the denoising filter can be iterated. A study of MSE
evolution with these iterations is proposed in [116] for several denoising operators, considering
several different patch types (texture, edge, flat). Iteration is, however, different from the oracle
iteration described above. In the oracle iteration, the matrix W is changed at each step, using
its better estimate given by the previously denoised image. One does not generally observe much
improvement by iterating the oracle method more than once. [116] points out another generic
tool, used at least for total variation denoising, the so-called “twicing”, term due to Tukey [143].
Instead of repeated applications of a filter, the idea is to process the residual obtained as the
difference between the estimated image and the initial image. If the residuals contain some of the
underlying signal, filtering them should recover part of it. The author shows that the Bregman
iterations [123] used for improving total variation based denoising are a twicing and so is the
matching pursuit method used in the K-SVD filter described in section 5.7.

4.3 Dealing with colour images

The straightforward strategy to extend denoising algorithms to colour or multivalued images is
to apply the algorithm independently to each channel. The use of this simple strategy often
introduces colour artifacts, easily detected by the eye. Two different strategies are observable in
state of the art denoising algorithms.

Depending on the algorithm formulation, a vector-valued version dealing at the same time with
all colour channels can be proposed. This solution is adopted by averaging filters like neighborhood
filters or NL-means. These algorithms compute colour differences directly in the vector valued
image, thus yielding a unified weight configuration which is applied to each channel.

The alternative option is to convert the usual RGB image to a different colour space where the
independent denoising of each channel does not create noticeable colour artifacts. Most algorithms
use the YUV system which separates the geometric and chromatic parts of the image. This change
writes as a linear transform by multiplication of the RGB vector by the matrix

0.30 059  0.11 % 3 3
YUV = [ -015 —020 044 |, Y UVo=|5 O -1
0.61 —0.51 —0.10 11

The second colour transform to the space Y,U,V, is an orthogonal transform. It has the advantage
of maximizing the noise reduction of the geometric component, since this component is an average
of the three colours. The geometric component is perceptually more important than the chromatic
ones, and the presence of less noise permits a better performance of the algorithm in this part.
It also permits a higher noise reduction on the chromatic components U, and V,, due to their
observable regularity.

This latter strategy is adopted by transform thresholding filters for which the design of an
orthonormal basis coupling the different colour channels is not trivial.

4.4 Trying all generic tools on an example

This section applies incrementally the previous generic denoising tools to the DCT sliding window
to illustrate how these additional tools permit to drastically improve the algorithm performance.
We start with the basic DCT “neighborhood filter” as proposed by Yaroslavsky [152]. Its principle
is to denoise a patch around each pixel, and to keep only the central denoised pixel.

Fig. 6 displays the denoised images obtained by incrementally applying each of the following
ingredients:
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- Basic DCT thresholding algorithm by the neighborhood filter technique (keeping only the
central pixel of the window). Each colour channel is treated independently.

- Use of an orthogonal geometric and chromatic decomposition colour system Y,U,V,; grey
parts are better reconstructed and colour artifacts are reduced.

- Uniform aggregation; the noise reduction is superior and isolated noise points are removed.

- Adaptive aggregation using the estimator variance; the noise reduction near edges is in-
creased, "halo” effects are removed.

- Additional iteration using “oracle” estimation; residual noise is totally removed and the
sharpness of details is increased.

The PSNR’s obtained by incrementally applying the previous strategies respectively are
26.85, 27.33, 30.65, 30.73, 31.25. This experiment illustrates how the use of these additional tools
is crucial to achieve competitive results. This last version of the DCT denoising algorithm, incor-
porating all the proposed generic tools, will be the one used in the comparison section. A complete
description of the algorithm can be found in Algorithm 3. The colour version of the algorithm
applies the denoising independently to each Y,U,V, component. This version is therefore slightly
better than the version online in [72], which does not use the oracle step.
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Algorithm 3 DCT denoising algorithm. DCT coefficients lower than 30 are canceled in the
first step and a Wiener filter is applied in the “oracle” second step. The colour DCT denoising
algorithm applies the current strategy independently to each Y,U,V, component.

Input: noisy image u, o noise standard deviation.
Optional: prefiltered image 4, for “oracle” estimation.
Output: output denoised image.

Set parameter k = 8: size of patches.
Set parameter h = 30: threshold parameter.

for each pixel i do

Select a square reference patch P around i of size & X k.
if 4; then

Select a square reference patch P; around i in ;.
end if

Compute the DCT transform of P.
if 4; then
Compute the DCT transform of P;.
end if
if 4; then
Modify DCT coefficients of P as

- - Pi(i)?
P(i)=P(i) =—————
(®) (Z)Pl (1)2 4 02
else B
Cancel coefficients of P with magnitude lower than h.
end if

Compute the inverse DCT transform obtaining P.

Compute the aggregation weight wp = 1/#{number of non-zero DCT coefficients}.
end for

for each pixel i do
Aggregation: recover the denoised value at each pixel i by averaging all values at i of all
denoised patches Q containing i, weighted by We.

end for
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Figure 6: Top: original and noisy images with an additive Gaussian white noise of standard
deviation 25. Below, from top to bottom and left to right: crop of denoised images by sliding
DCT thresholding filter and incrementally adding use of a Y,U,V, colour system, uniform aggre-
gation, variance based aggregation and iteration with the “oracle” given by the first step. The
corresponding PSNR are 26.85, 27.33, 30.65, 30.73, 31.25.

5 Detailed analysis of nine methods

In this section, we give a detailed description and analysis of nine denoising methods. Six of them,
for which reliable faithful implementations are available, will be compared in section 6.

5.1 Non-local means

The Non-local means (NL-means) algorithm tries to take advantage of the redundancy of most
natural images. The redundancy, or self-similarity hypothesis is that for every small patch in a
natural image one can find several similar patches in the same image, as illustrated in figures
7 and 8. This similarity is true for patches whose centers stand at a one pixel distance of the
center of the reference patch. In that case the self-similarity boils down to a local image regularity
assumption. Such a regularity is guaranteed by Shannon-Nyquist’s sampling conditions, which
require the image to be blurry. In a much more general sense inspired by neighborhood filters, one
can define as “neighborhood of a pixel i” any set of pixels j in the image such that a patch around j
looks like a patch around i. All pixels in that neighborhood can be used for predicting the value
at i, as was first shown in [61] for the synthesis of texture images. This self-similarity hypothesis
is a generalized periodicity assumption. The use of self-similarities is actually well-known in
information theory from its foundation. In his 1948 Mathematical Theory of Communication,
Shannon [136] analyzed the local self-similarity (or redundancy) of natural written language, and
gave probably the first stochastic text synthesis algorithm. The Efros-Leung texture synthesis
method adapted this algorithm to images, and NL-Means [18] seems to be first adaptation of the
same idea to denoising?

2Nevertheless, some researchers have pointed out to us the report [46] as giving an early intuition that intuition
could use signal redundancy. This very short paper describes an experiment in a few sentences. It suggests that
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Figure 7: g1 and ¢2 have a large weight because their similarity windows are similar to that of p.
On the other side the weight w(p, ¢3) is much smaller because the intensity grey values in the
similarity windows are very different.

NL-means denoises a square reference patch P around i of dimension x x & by replacing it
by an average of all similar patches Q in a square nelghborhood of i of size A x A. To do this,
a normalized Euclidean distance between P and Q, d(P,Q) = %5||P — Q||? is computed for all

patches Q is the search neighborhood. Then the weighted average is

~ d(P Q)2

2.4 Qe
aP.Q)?
ZQ e

The thing that helps NL-means over the neighborhood filters is the concentration of the noise law,
as the number of pixels increases. Because the distances are computed on many patch samples
instead of only one pixel, the fluctuations of the quadratic distance due to the noise are reduced.

pP=

Related attempts: [147] proposed a “universal denoiser” for digital images. The authors prove
that this denoiser is universal in the sense “of asymptotically achieving, without access to any
information on the statistics of the clean signal, the same performance as the best denoiser that
does have access to this information”. In [122] the authors presented an implementation valid for
binary images with an impulse noise, with excellent results. Awate and Whitaker [7] also proposed
a method whose principles stand close to NL-means, since the method involves comparison between
patches to estimate a restored value. The objective of the algorithm is to denoise the image by
decreasing the randomness of the image.

A consistency theorem for NL-means. NL-means is intuitively consistent under stationarity
conditions, namely if one can find many samples of every image detail. It can be proved [24] that
if the image is a fairly general stationary and mixing random process, for every pixel i, NL-means
converges to the conditional expectation of i knowing its neighborhood, which is the best Bayesian
estimate.

NL-means as an extension of previous methods. A Gaussian convolution preserves only
flat zones, while contours and fine structure are removed or blurred. Anisotropic filters instead
preserve straight edges, but flat zones present many artifacts. One could think of combining these
two methods to improve both results. A Gaussian convolution could be applied in flat zones,
while an anisotropic filter could be applied on straight edges. Still, other types of filters should be

region redundancy on both sides of an edge can be detected, and used for image denoising. Nevertheless, no
algorithm is specified in this paper.

33



.' Illf-

Figure 8: On the right-hand side of each pair, one can see the weight distribution used to estimate
a centered patch of the left image by NL-means. (a) In flat zones, the weights are uniformly
distributed, NL-means acts like a low pass isotropic filter. (b) On straight edges, the weights
are distributed in the direction of the edge (like for anisotropic filters). (c¢) On curved edges,
the weights favor pixels belonging to the same contour. (d) In a flat neighborhood, the weights
are distributed in a grey-level neighborhood (exactly like for neighborhood filters). In the cases of
(e) and (f), the weights are distributed across the more similar configurations, even though they
are far away from the observed pixel. This behavior justifies the “non local” appellation.

designed to specifically restore corners, or curved edges, or periodic texture. Figure 8 illustrates
how NL-means chooses the right weight configuration for each sort of image self-similarity.

NL-means is easily extended to the denoising of image sequences and video, involving indis-
criminately pixels belonging to a space-time neighborhood. The algorithm favors pixels with a
similar local configuration. When the similar configuration moves, so do the weights. Thus, as
shown in [23] the algorithm is able to follow moving similar configurations without any explicit
motion computation (see Fig. 9).

Indeed, this fact contrasts with previous classical movie denoising algorithms, which were
motion compensated. The underlying idea of motion compensation is the existence of a “ground
truth” for the physical motion. Legitimate information about the colour of a given pixel should
exist only along its physical trajectory. Yet, one of the major difficulties in motion estimation is
the ambiguity of trajectories, the so-called aperture problem. The aperture problem, viewed as a
general phenomenon of movies, can be positively interpreted in the following way: There are many
pixels in the next or previous frames which resemble the current pixel. Thus, it seems sound to
use not just one trajectory, but rather all similar pizels to the current pixel across time and space
as NL-means does (see [23] for more details on this discussion).
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Algorithm 4 NL-means algorithm (parameter values for x, A are indicative).

Input: noisy image 4, o noise standard deviation.
Output: output denoised image.

Set parameter k = 3: size of patches.
Set parameter A = 31: size of research zone for which similar patches are searched.
Set parameter h = 0.6 : bandwidth filtering parameter.

for each pixel i do
Select a square reference patch P around i of dimension k X k.
Set P =0 and C = 0.
for each patch Q in a square neighborhood of i of size A x A do
Compute the normalized Euclidean distance between P and Q, d(P,Q) = %HP -Ql*

d(P.9)?2

h2

. d(P,d)2 ~
to Pand e~ »2  to(C

Accumulate Qe™
end for
Normalize the average patch P by dividing it by the sum of weights C

end for

for each pixel x do
Aggregation: recover the denoised value at each pixel i by averaging all values at i of all
denoised patches Q containing i

end for
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c)

Figure 9: Weight distribution of NL-means applied to a movie. In a), b) and c) the first row shows a
five frames image sequence. In the second row, the weight distribution used to estimate the central pixel
(in white) of the middle frame is shown. The weights are equally distributed over the successive frames,
including the current one. They actually involve all the candidates for the motion estimation instead
of picking just one per frame. The aperture problem can be taken advantage of for a better denoising
performance by involving more pixels in the average.
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5.2 Non-local Bayesian denoising

It is apparent that (8) given in section 3.1,

Py =P+ [Cp—0o’I|CH(P-P),
gives by itself a denoising algorithm, provided we can compute the patch expectations and patch
covariance matrices. We shall now explain how the Non-local Bayes algorithm proposed in [86]
does it. Let P(P) be the set of patches Q similar to the patch P, which have obtained with a
suitably chosen tolerance threshold, so that we can assume that they represent noisy versions of
the patches similar to P. Then, by the law of large numbers, we have

1 ~ =\/x~ =\! = 1 ~
cﬁzW Z(Q—P)(Q—P), ) 3y G (17)
QeP(P) QcP(P)
Nevertheless, the selection of similar patches at the first step is not optimal and can be improved
in a second estimation step where the first step estimation is used as oracle. Thus, in a second
step, where all patches have been denoised at the first step, all the denoised patches can be used
again to obtain an estimation Cp for Cp, the covariance of the cluster containing P, and a

new estimation of F, the average of patches similar to P. Indeed, the patch similarity is better
estimated with the denoised patches. Then it follows from (7) and (8) that we can obtain a second
better denoised patch,

~ —1 -1 _ —1
P=P +Cp [cpl+a21} (P-P) (18)
where

CPF#P(;MA ZA(Ql )(Ql 1)’ P #P( X @

Q1EP(P1)

We write the denoised patches Pin (17) and P in (18). Indeed, in (18), the denoised version of
P computed as the average of noisy patches Q whose denoised patch is similar to Py.

In short, the estimates (8) and (18) appear equivalent, but they are not in practice. Cp ,
obtained after a first denoising step, is a better estimation than Cz. Furthermore, ]51 is a more
accurate mean than P. It uses a better evaluation of patch similarities. All above quantities being
computable from the noisy image, we obtain the two step algorithm 5.

As pointed out in [27], the Nonlocal Bayes algorithm only is an interpretation (with some
generic improvements like the aggregation) of the PCA based algorithm proposed in [157]. This
paper has a self-explanatory title: “Two-stage image denoising by principal component analysis
with local pixel grouping.” It is equivalent to apply a PCA on the patches similar to P, followed by
a Wiener filter on the coefficients of P on this PCA, or to apply formula (8) with the covariance
matrix of the similar patches. Indeed the PCA computes nothing but the eigenvalues of the
empirical covariance matrix. Thus, the method in [157] gets its Bayesian interpretation. A study
on the compared performance of local PCA versus global PCA for TSID is actually proposed in
[31].

5.3 Patch-based near-optimal image denoising (PLOW)

While in the Non-local Bayes method of section 5.2 a local model is estimated in a neighborhood
of each patch, in the PLOW [33] method the idea is to learn from the image a sufficient number of
patch clusters, actually 15, and to apply the LMMSE estimate to each patch after having assigned
it to one of the clusters obtained by clustering. Thus, this empirical-Bayesian algorithm starts
by clustering the patches by the classic K-means clustering algorithm. To take into account that
similar patches can actually have varying contrast, the inter-patch distance is photometrically
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Algorithm 5 Non local Bayes image denoising

Input: noisy image
Output: denoised image

for all patches P of the noisy image do
Find a set ’P(]5) of patchei() similar to P.

Compute the expectation P and covariance matrix Cp of these patches by

CPN#P(}D)—L > (a-P)@-PB). P~ #Pl(ﬁy Y G

QEP(P) QeP(P)

Obtain the first step estimation:

end for

Obtain the pixel value of the basic estimate image @, as an average of all values of all denoised
patches 1 which contain i.

for all patches P of the noisy image do

Find a new set P (15) of noisy patches Q similar to P by comparing their denoised “oracular”
versions (@1 to P;.

—=1
Compute the new expectation P and covariance matrix C P, of these patches:

Q.eP(P1) Q.eP(Pr)
Obtain the second step patch estimate
A Tl 2 _1 ~ Tl
Py=P +Cp [Cp+0%] (P-P).

end for
Obtain the pixel value of the denoised image (i) as an average of all values of all denoised
patches Q2 which contain i.
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neutral, and the authors call it a “geometric distance”. The clustering phase is accelerated by
a dimension reduction obtained by applying a principal component analysis to the patches. The
clustering is therefore a segmentation of the set of patches, and the denoising of each patch is
then performed within its cluster. Since each cluster contains geometrically similar, but not
necessarily photometrically similar patches, the method identifies for each patch in the cluster
the photometrically similar patches as those whose quadratic distance to the reference patch are
within the bounds allowed by noise. Then a LMMSE [81] estimate is obtained for the reference
patch by a variant of (8). The algorithm uses a first phase, which performs a first denoising before
constituting the clusters. Thus the main phase is actually using the first phase as oracle to get
the covariance matrices of the sets of patches.

Algorithm 6 Algorithm 1: PLOW denoising

Input: image in vector form U .
Output: denoised image in vector form U.

Set parameters: patch size kK X Kk = 11 x 11, number of clusters K = 15;
Estimate noise standard deviation & by & = 1.4826median(|VU — median(VU)));
Set parameter: h? = 1.756%k2;
Pre-filter image U to obtain a pilot estimate Ul,
Extract overlapping patches of size x x &, Q from U and Q; from Uy;
Geometric clustering with K-Means of the patches in U; (using a variant of PCA for the patches).
The distance is a geometric distance, photometrically neutral.
for each patch cluster €, do
Estimate from the patches Ql € Q the mean patch P ~ Zélem Ql and the cluster

covariance Ch. .

for each patch @, ; € 2, do
Consider its associated noisy patch Qz Identify photometrically similar patches Qj in the
Cluster as those with a quadratic distance to Q; within the bounds allowed by noise, namely
2 + 2k2%62, with v = v(k) a “small” threshold.

5. —O .12

Compute similarity weights w;; = 67%.
Compute the slightly more complex than usual LMMSE estimator for the noisy patch Q;,
(because the cluster contains patches that are geometrically similar but not necessarily

photometrically similar):

N P -k Wij N,_*
Qi=P+ |I- zj:chPH Zzww ; — P).

end for
end for
At each pixel aggregate multiple estimates from all P containing it, with weights given as
inverses of the variance of each estimator.
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5.4 Inherent bounds in image denoising

By “Shotgun” patch denoising methods, we mean methods that intend to denoise patches by a
fully non-local algorithm, in which the patch is compared to a patch model obtained from a large
or very large patch set. The “sparse-land” methods intend to learn from a single image or from a
small set of images a sparse patch dictionary on which to decompose any given patch. The shotgun
methods learn instead from a very large patch set extracted from tens of thousands of images (up
to 10'0 patches). Then the patch is denoised by deducing its likeliest estimate from the set of
all patches. In the case of [161], this patch space is organized as a Gaussian mixture with about
200 components. Shotgun methods have started being used in several image restoration methods.
For example in [74], for image inpainting, with an explicit enough title: “Scene completion using
millions of photographs”.

The approach of [92] is to define the simplest universal “shotgun” method, where a huge set of
patches is used to estimate the upper limits a patch-based denoising method will ever reach. The
results support the “near optimality of state of the art denoising results”, the results obtained by
the BM3D algorithm being only 0.1 decibel away from optimality for methods using small patches
(typically 8 x 8.)

This experiment uses to evaluate the MMSE a set of 20, 000 images from the LabelMe dataset
[135]. The method, even if certainly not practical, is of exquisite simplicity. Given a clean patch
P the noisy patch P with Gaussian noise of standard deviation ¢ has probability distribution

1 _lp=r|?

P(P|P)= W«a 202 (20)

where x? is the number of pixels in the patch. Then given a noisy patch P its optimal estimator
for the Bayesian minimum squared error (MMSE) is by Bayes’ formula
P|P)

P:E[P|P]:/P(P\]5)PdP:/P(

PP P(P)PdP. (21)

Using a huge set of M natural patches (with a distribution supposedly approximating the real
natural patch density), we can approximate the terms in (21) by P(P)dP ~ - and P(P) ~

L3 P(P | P;), which in view of (20) yields

1 i P(P| PP
1 i P(P | P)

Thus the final MMSE estimator is nothing but the exact application of NL-means, denoising each
patch by matching it to the huge patch database. Clearly this is not just a theoretical algorithm.
Web based application could provide a way to denoise online any image by organizing a huge patch
data base. The final algorithm is summarized in Algorithm 7.

The main focus of [92] is, however, as we mentioned, elsewhere: it uses this shotgun denoising
to estimate universal upper and lower bounds of the attainable PSNR by any patch based denoising
algorithm. More precisely, the algorithm gives upper and lower bounds to the following problem:

Given a noisy patch P, given the law p(P) of all patches in the world, find the best possible
estimate (in the sense of MMSE). The shotgun algorithm gives a best possible estimate for any
patch based denoising algorithm of this kind.

The upper bound obtained by the authors turns out to be very close to results obtained with
BM3D (see sec. 5.8), and the authors conclude that for small window sizes, or moderate to
high noise levels, the chase for the best denoising algorithm might be close to the finish. More
precisely, only fractions of decibels separate the current best algorithms from these demonstrated
upper bounds. The EPLL method [161] can be viewed as a first (slightly) more practical realization
of this quasi-optimality by a shotgun algorithm, and there is no doubt that other more practical
ones will follow. We now describe how the [92] lower and upper bounds can be estimated from a
sufficient set of natural images.

P~
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Algorithm 7 Shotgun NL-means

Input: Noisy image @ in vectorial form.
Input: Very large set of M patches P; extracted from a large set of noiseless natural images.
Output: Denoised image .

for all patches P extracted from @ do y
Compute the MMSE denoised estimate of P

M (P(P | P)P,
SL P(P | Py)

P~

where P(P | P;) is known from (20).
end for
At each pixel i get a(i) as P(i), where the patch P is centered at i.
(optional Aggregation) : for each pixel j of u, compute the denoised version u; as the average
of all values P(J) for all patches containing j. (This step in not considered in [92].)

The MSE for a given denoising algorithm can be obtained by randomly sampling patches P,
then add noise to generate noisy patches P, and measure the reconstruction error ||1P— P||2 Then
the mean reconstruction error is

MSE = / P(P) / P(P | P)||P — P|*dPdP. (22)

Conversely, one can start from a noisy patch P, measure the variance of P(P | ]5) around it. This
amounts according to the authors of [92] to compute the sum of weighted distances between the
restored P and all possible P explanations:

MSE = /P(P)/IP(P | P)|| P — P|?dPdP. (23)
This last equation follows from (22) by the Bayes rule. For each noisy P one can define its MMSE

MMSE(P) = E[|P — P||> | P| = /IP(P | P)(P — P)%dP. (24)

The main interest of this formulation is that it permits to prove that the MMSE is, of all denoising
algorithms, the one that minimizes the overall MSE. Indeed, differentiating (23) with respect to P
yields back the MMSE estimator (21). The best overall MMSE achievable by any given denoising
algorithm therefore is

MMSE = /]P’(P)E[HP —P|?| P = /P(P)P(P | P)(P — P)?dPdP. (25)

The goal of [92] is to bound the MMSE from below, ignoring of course the probability distribution
P(P), but having enough samples of it. The main idea is to derive an upper and a lower bound
on the MMSE from the two MSE formulations (22)-(23). Given a set of M clean and noisy pairs
{(P;,P;)}, j =1...,M and another independent set of N clean patches {P;}, i = 1..., N, both
randomly sampled from natural images the proposed estimates are

1 ~
MMSEY = i ; |P; — P2 (26)
and
P)|P; — P2

P(P; |
> P(P; | P)

MMSE”L = Z (27)

J
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A striking feature of both estimates is that MM SEY uses the explicit knowledge of the original
noise-free patch P;, while MMSE?® does not involve it. Since MMSEY simply measures the error
for a given denoising algorithm, it obviously provides an upper bound for the MMSE of any other
denoising algorithm. As the authors observe, MMSEY and MMSE® are random variables that
depend on the choice of the samples. When the sample size approaches infinity, both converge to
the exact MMSE. Nevertheless, [92] gives a simple proof that, for a finite sample, in expectation,
MMSEY and MMSE” provide upper and lower bounds on the best possible MMSE. When both
MMSEY and MMSE? coincide, they provide an accurate estimate of the optimal denoising possible
with a given patch size.

For very high noise levels, the authors of [92] also tried to apply the linear minimum mean
square error (LMMSE) estimator (or Wiener filter) using only the second order statistics of the
data, by fitting a single k2 dimensional Gaussian to the set of M image k x k patches. They
conclude that even this simple approach is close to optimal for large noise.

- MMSE] 30 - MMSE
36 32 ~=— MMSE!| —= MMSE"]
—a— L MMSE] 28 —s— LMMISE]

35|  BM3D & BM3D

30) A k5D 2 A ksvo
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(@)oo =18 (b)a =55 (€)oo =170
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Figure 10: Comparing [92] the PSNR (= —10log;,(MMSE)) of several denoising algorithms (K-
SVD [100], BM3D [39], Gaussian Scale Mixture [128]) compared to the PNSR predicted by
MMSEY, MMSEY. The performance of all algorithms is bounded by the MMSEY estimate,
but BM3D approaches this upper bound by fractional dB values. Nevertheless, the performance
bounds consider more restrictive patch based algorithms than the class BM3D belongs to. Thus
the actual gap to optimality may be higher.

5.5 The expected patch log likelihood (EPLL) method

The patch Gaussian mixture model This other shotgun method [161] is an almost literal
application of the piecewise linear estimator (PLE) method [156], see section 5.9). But it is
shotgun, namely applied to a huge set of patches instead of the image itself. A Gaussian mixture
model is learnt from a set of 2.10% patches, sampled from the Berkeley database with their mean
removed. The 200 mixture components with zero means and full covariance matrices are obtained
using the EM (expectation maximization) algorithm. This training took about 30 hours with
a public MATLAB code®. Thus were learnt: 200 means (actually they are all zero), 200 full
covariance matrices and 200 mixing weights which constitute the Gaussian mixture model of this
set of patches. Fig 11 shows some six bases extracted from the Gaussian mixture. Each one shows
the patches that are eigenvectors of some of the covariance matrices, sorted by eigenvalue.

Once the Gaussian mixture is learnt, the denoising method maximizes the Expected Patch Log
Likelihood (EPLL) while being close to the corrupted image in a way which is dependent on the
(linear) corruption model. Given an image U (in vector form) the EPLL of U under prior P is
defined by

EPLLp(U) = logP(P;U)

where P; is a matrix which extracts the i-th patch P; from the image U out of all overlapping
patches, while log P(P;X) is the likelihood of the i-th patch under the prior P. Assuming a patch

3

http://www.mathworks.com/matlabcentral/fileexchange/26184-em-algorithm-for-gaussian-mixture-model.
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Figure 11: Eigenvectors of six randomly selected covariance matrices from the learnt Gaussian
mixture model, sorted by eigenvalue from largest to smallest, from [161]. The authors notice the
similarity of these basis elements to DCT, but also that many seem to model texture boundaries
and edges at various orientations.

location in the image is chosen uniformly at random, EPLL can be interpreted as the expected log
likelihood of a patch in the image (up to a multiplication by 1/M). Given a corrupted image U
in vector form and a model of image corruption of the form ||AU — U|[?, the restoration is made
by minimizing
. A _
fe(UU) = SI|AU = U|[* = EPLLs(U).

According to the authors, “This equation has the familiar form of a likelihood term and a prior
term, but note that EPLLp(U) is not the log probability of a full image. Since it sums over the
log probabilities of all overlapping patches, it “double counts” the log probability. Rather, it is
the expected log likelihood of a randomly chosen patch in the image.”

The optimization is made by “half quadratic splitting” which amounts to introduce auxiliary
patch variables Z¢, i = 1,... M, one for each patch P;, and to minimize alternatively the auxiliary
functional

iV T A g B i i
Coa(UAZHD) = SIAU ~T| + 5 3 |IPU — 771 ~ logP(7°),

Solving for U given {Z'} amounts to the inversion

-1
U= (AATA + 5ZPfP¢> (AATU + ﬂZP?ZZ) .

In the case of denoising, A is simply the identity, and the above formula boils down to computing
for each pixel j a denoised value U(j) as a weighted average over all patches P; containing this
given pixel j of the noisy pixel value U(j) and of the patch denoised values Z;(j):

AUG) + X p,55 Zi(3)

UG = =

(28)

where k2 is the patch size.

Then, solving for {Z;} given U amounts to solving a MAP (maximum a posteriori) problem
of estimating the most likely patch under the prior P, given P;U and parameter 3.

The Gaussian mixture model being known, calculating the log likelihood of a given patch is
trivial:

K
log P(Q) = log (Z FkN(QWk,Ck)) )
k=1

where 7, are the mixing weights for each of the mixture component, u; and Cj are the corre-
sponding mean and covariance matrix.
Given a noisy patch @, the MAP estimate is computed with the following procedure:
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Algorithm 8 Patch restoration once the Patch Gaussian mixture is known

for each noisy patch Q do ~
Compute the conditional mixture weights 7, = P(k | Q) (given by EM);

Pick the component k with the highest conditional mixing weight: k4, = maxy, m;
The MAP estimate ) is a Wiener solution for the k,,q.-th component:

Q= (Chpe +0°1) " (Ch @ + 0,0 ) -

end for
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The authors comment that this is one iteration of the “hard version” of the EM algorithm for
finding the modes of a Gaussian mixture [30]. The method can be used for denoising and several
experiments seems to indicate that it equals the performance of BM3D and LLSC [100].

5.6 The Portilla et al. wavelet neighborhood denoising (BLS-GSM)

The basic idea of this algorithm is modeling a noiseless “wavelet coefficient neighborhood”, P, by
a Gaussian scale mixture (GSM) which is defined as

P=\zU

where U is a zero-mean Gaussian random vector and z is an independent positive scalar random
variable. The wavelet coefficient neighborhood turns out to be a patch of an oriented channel of
the image at a given scale, complemented with a coefficient of the channel at the same orientation
and the next lower scale. Thus, we adopt again the patch notation P. (Arguably, this method
is the first patch-based method.) Using a GSM model for P estimated from the image itself, the
method makes a Bayes least square (BLS) estimator. For this reason, the method will be called
here BLS-GSM (Bayes least square estimate of Gaussian scale mixture; the authors called it simply
BLS.) Without loss of generality it is assumed that Ez = 1 and therefore the random variables
U and P have similar covariances. To use the GSM model for wavelet patch denoising, the noisy
input image is first decomposed into a wavelet pyramid, and each image of the pyramid will be
separately denoised. The resulting denoised image is obtained by the reconstruction algorithm
from the wavelet coefficients. To avoid ringing artifacts in the reconstruction, a redundant version
of the wavelet transform, the so-called steerable pyramid, is used. For a n; X ny image, the
pyramid, P, is generated on log,(min(ny,ny) —4) scales and eight orientations using the following
procedure. First the input image is decomposed into one low-pass and eight oriented high-pass
component images using two polar filters in quadrature in the Fourier domain (the sum of their
squares is equal to 1). The Fourier domain being represented in polar coordinates (r,6), the low
pass and high pass isotropic filters are

1 0<r<0.5
I(r) = cos(5(—logyr—1)) 05<r<1; (29)
0 1<r<V2;
and
0 0<r<0.5
h(r) = q cos(5(logy 7)) 0.5 <r <1; (30)
1 1<r<+V2.
The high pass filter h is decomposed again into eight oriented components,
ag(r,0) = h(r)gr(9), ke[0,K —1], (31)
where K = 8, and
(K —1) [ < m)r—l
0) = ————=——=|2cos | 0 — — . 32
9k(0) ) I (32)

Then the steerable pyramid is generated by iteratively applying the aj filters to the result of the
low-pass filter to obtain bandpass images, and calculating the residual using the [ filter followed by
sub-sampling. For example in the case of a 512x512 image we have a 5 scales pyramid consisting
of 49 sub-bands: 8 high-pass oriented sub-bands, from P! to P®, 8 bandpass oriented sub-bands
for each scale, from P? to P*¥, in addition to one lowpass non-oriented residual subband, P*.
(WLOG we shall keep this 49 number as landmark, but this number depends of course on the
image size). Assume now that the image has been corrupted by independent additive Gaussian
noise. Therefore, a typical neighborhood of wavelet coefficients can be represented as

P=P+N=+zU+N, (33)
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where noise, N, and P are considered to be independent. Define p4(i, j) as the sample at position
(i,7) of the sub-band P*, the subbands being enumerated as (e.g.) s = 1,...,49. The neighbor-
hood of the wavelet coefficient p; (7, j) is composed of its spatial neighbors for the same sub-band
s. It could have contained also coefficients from other sub-bands at the same scale as ps(i,7) but
with different orientations, and could finally also contain sub-band coefficients from the adjacent
scales, up and down. Surprisingly, the final neighborhood is quite limited: The authors sustain
that the best efficiency is reached with a 3x3 spatial block around p; (%, j), supplemented with one
coefficient at the same location and at the next coarser scale (considering its up-sampled parent
by interpolation) with the same orientation. Hence, the neighborhood size is 10 and contains
only {ps(i — 1,7 —1),...,ps(t + 1,5 + 1),ps+s(4,5)}. There are two exceptions for this: first is
the neighborhood of coarsest scale coefficients (without any coarser scale) has necessarily only
9 surrounding coefficients. Second, the boundary coefficients are processed using special steps
described below. Using the observed noisy vector, }5, an estimation of P, can be obtained by

EGWP%:AMP@|QEG’P&MA

This estimation is the Bayesian denoised value of the reference coefficient. The integral is computed
numerically on experimentally obtained sampled intervals of z. Here, only 13 equally spaced values

of z in the interval [In(zmin), In(zmaz)] = [—20.5,3.5] are used. Therefore E(P | P) is computed
as 5
E(P| P) =Y B(zi | PYE(P | P,z). (34)
i=1

The only question left is: how to compute the conditional probability and the conditional expec-
tation, P(z; | 15) and E(P | P, z). For each sub-band, P* except the low-pass residual, P which
remains unchanged, define Cy and C%, respectively the noise and the observation covariance
matrices of the wavelet neighborhood. If n® denotes the size of neighborhood at sub-band P* (n®
therefore is 10 or 9 as explained above), C% is a n® X n® matrix which can be experimentally
generated by first decomposing a delta function ¢d on the steerable pyramid. Here ¢ is the known

noise variance and 4 is an ny X ny image defined by

2(0,7) = {1 () = (3. %),

0 otherwise.

(This covariance matrix is equal to the covariance of the white noise defined as a band-limited
function obtained by randomizing uniformly the phase of the Fourier coefficients of the discrete
Dirac mass d.) Using the steerable pyramid decomposition of ¢4, define N as the matrix which has
for rows all neighborhoods of the sub-band P,. This is a matrix with n, columns and (n; —2)(ny—2)
rows. (Subtracting 2 is for eliminating the boundary coefficients). The covariance C} matrix of
the neighborhood samples for each sub-band is computed as

NIN,
(n1=2)(n2 —2)’
where (.)7 stands for matrix transposition. Since all the noise removal steps are calculated for
each sub-band separately, in the following we skip the superscript s to simplify the notation.

Similarly but using the pyramid of observed noisy samples, C 3 can be computed. Using (33) and
the assumption Fz = 1, for each sub-band s we have

Cy =

Cy = Cp — Cy.

Cy can be forced to be positive semi-definite by setting to zero all of its negative eigenvalues. We

can now calculate E(P | P, z;). Using the fact that P and N are Gaussian independent variables

and also that the noise is additive, E(P | P, z;) is simply a local Wiener estimate:

. :Cy =

EP|P,z) = ———-—F1P
(PIP2) = —~a b
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where the matrix fraction notation is understood as % := CW ™. Clearly it would be cumbersome
to compute as many matrix inversions as z;’s. Fortunately, with a bit of linear algebra this
computation can be rendered common to all z;. Define {Q, A} as the eigenvectors and eigenvalues
of STICyS™T, where Sy:yns is the symmetric square root of Cy, Cny = SST. So we have
S71CyS™T = QAQT. Furthermore, set M = SQ, v = M"!P. Then we have

_ :Cy =

ZCU TP
2Cy + SS
2C ~
—1 IiT TP
S(zs7'CyS~T +1)S
2C -
v T TP
SQ(zA +1)Q"'S
= 2CpSTTQRA+I) QTSP
= 2887'CySTTQzA+D) QTSP
= 2SQA(zA+1)7'QTSs7'P
= 2MA(ZA+1)7v.

The interest is that one can calculate M, A and v once for each subband. The scalar final
formulation of the above equation is
™ 2, gV

E(P|P,z). = S pea
VAV

Jj=1

; (35)

where m. j, Aj; and v; are the elements of M, A and v respectively, and c is the index of the
reference coefficient in the neighborhood.

The second component of (34) is P(z; | P), which can be obtained using the Bayes rule (p,(z)
denotes the density function of the random variable z:

s PP z)pa(z)
Pz | P) = fooo P(P | @)p,(a)da

or its discrete form ~
P(P | zi)p(2i)

13 = :
> =1 P(P | 2)p=(25)
where the density of observed noisy neighborhood vector P conditioned on z; is a zero-mean
Gaussian with covariance

P(z; | P) = (36)

CP\Zi = 2;Cy + Cup,
so that

_ —PTGcpy+cy) TP
2

\/‘ZCU —|—CN|

Using the above definitions of v and A and the same simplifications as for E(P | P, z;) we obtain

P(P|z) =<

) RN e
72, (25 + 1)

The only question left is the form of p.(z). The authors, after a somewhat puzzling discussion,
adopt “a non-informative Jeffrey prior” p,(z) ~ % Since this function cannot be a density, being
non integrable, the function is actually cut off to zero near z = 0.

To summarize, the Portilla et al. algorithm is:
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Algorithm 9 Portilla et al. wavelet neighborhood denoising (BLS-GSM)

Input: noisy image
Output: denoised image

Parameters: n; X ny the image size, number of pyramid scales log,(min(nq, ng) — 4).
Parameter s, enumeration of all oriented channels at each scale (8 per scale).
Establish n®, dimension of wavelet neighborhood coefficient (10 or 9).

Apply the wavelet pyramid (29)-(32), respectively to the noise image § and to the observed
image.
Regroup the obtained wavelet coefficients to obtain P*, the wavelet coefficient neighborhoods
of rank s and N° the noise wavelet coefficient neighborhoods of rank s.
for each filter index s do
Compute C% and C‘}j, noise and observation covariance matrices of Ny and P;. (In the sequel
the subscript s is omitted.) Deduce Cyy = Cp — Cy.
Compute {Q, A} the eigenvectors and eigenvalues of S™'CyS~ T, where S is the symmetric
square root of Cy, Cn = SST.
end for
for each wavelet coefficient neighborhood P and i € {1,...,13} do
Compute M =8Q, v=M'P
Using (35) obtain E(P | P, z). = Z?Zl %, where m, ;, A, j and v; are the elements
of M, A and v respectively, and c is the index of the reference coefficient in the neighborhood.
Apply (36) to get P(z | P) = = LlZP=(2) _ yging the value obtained by (37) for P(P |
) Zj:l P(P|z;)p=(z;)

v
n’ J

1 [
2 20j=17%;x; ;F1

€
H_;Lil(ziAj,]+1) ’
By (34) finally obtain E(P | P) = Y12 P(z; | P)E(P |
quantized uniformly on the interval [In(zmin); In(2maz)] =

end for

Reconstruct the restored image from its restored neighborhood coefficients E(P | ]5) by the

inverse steerable pyramid.

P, z;) where p,(z) ~ 1 and z; are
[-20.5,3.5].
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As we shall see in the synthesis, in spite of its formalism, this method is actually extremely
similar to other patch-based Bayesian methods. It has received a more recent extension, reaching
state of the art performance, in [97]. This paper proposes an extension of the above method
modeling the wavelet coefficients as a global random field of Gaussian scale mixtures.

5.7 K-SVD

The K-SVD method was introduced in [2] where the whole objective was to optimize the quality
of sparse approximations of vectors in a learnt dictionary. Even if this article noticed the interest
of the technique in image processing tasks, it is in [62] that a detailed study has been led on
the denoising of grey-level images. Then, the adjustment to colour images has been treated in
[103]. Let us notice that this last article proved that the K-SVD method can also be useful in
other image processing tasks, such as non-uniform denoising, demoisaicing and inpainting. For a
detailed description of K-SVD the reader is referred to [99] and [101].

The algorithm is divided in three steps. In the two first steps an optimal dictionary and a
sparse representation is built for each patch in the image, using among other tools a singular
value decomposition (SVD). In the last step, the restored image is built by aggregating the com-
puted sparse representations of all image patches. The algorithm requires an initialization of the
dictionary which is updated during the process. The dictionary initialization may contain usual
orthogonal basis (discrete cosine transform, wavelets...), or patches from clean images or even from
the noisy image itself.

The first step looks for sparse representations of all patches of size k2 in the noisy image in
vector form U using a fixed dictionary D. A dictionary is represented as a matrix of size £2 X ng;e,
with ngi. > w2, whose columns (the “atoms of the dictionary”) are normalized (in Euclidean
norm). For each noisy patch R;U, (where the index i indicates that the top left corner of the
patch is the pixel i, and Rj; is the matrix extracting the patch vector from U ) a “sparse” column
vector «; (of size ng;.) is calculated by optimization. This vector of coefficients should have only a
few non-zero coefficients, the distance between R;U and its sparse approximation Dy remaining
as small as possible. The dictionary allows one to compute a sparse representation «; of each
patch R;U. These sparse vectors are assembled in a matrix o with 2 rows and N, columns where
N, is the number of patches of dimension k2 of the image.

More precisely, an ORMP (Orthogonal Recursive Matching Pursuit) gives an approximate
solution of the (NP-complete) problem

Argmin |Jos][o  such that ||R;U — Dayl|3 < k%(Co)? (38)
oy
where ||ai||o refers to the (° norm of aj, i.e. the number of non-zero coefficients of ;. The

additional constraint guarantees that the residual has an {2 norm lower than xCo. C is an user
parameter. The second step tries to update one by one the columns of the dictionary D and

the representations « to improve the overall fidelity of the patch approximation. The goal is to
decrease the quantity

> |Dos — RiU |13 (39)

while keeping the sparsity of the vectors ;. We will denote by d, (1 <1 < ngi) the columns of
the dictionary D. First, the quantity (39) is minimized without taking care of the sparsity. The
atom d; and the coefficients @; (1) are modified to make the approximations of all the patches more
efficient. For each i, introduce the residue

eé = Riﬁ — f)di + a?lo?i(l) (40)

which is the error committed by deciding not to use d; any more in the representation of the patch

R;U. Thus ef is a vector of size k2.
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These residues are grouped together in a matrix E; (whose columns are indexed by i). The
values of the coefficients (1) are also grouped in a row vector denoted by &'. Therefore, E; is a
matrix of size k2 x N,, (recall that N, is the total number of patches in the image) and &' is a row

l

vector of size IV, We must try to find a new d; and a new row vector &' minimizing

> IDds — didis(1) + dia' — RU |3 = || By — dio |3 (41)

where the squared Frobenius norm ||[M]||2 refers to the sum of the squared elements of M. This
Frobenius norm is also equal to the sum of the squared (Euclidean) norms of the columns, and one
can be convinced that minimizing (41) amounts to reduce the approximation error caused by d;.
It is well-known that the minimization of such a Frobenius norm consists in a rank-one approx-

imation, which always admits a solution, practically given by the singular value decomposition
(SVD). Using the SVD of E; :

E, = UAVT

(where U and V are orthogonal matrices and A is non-negative and decreasing), the updated

values of d; and & are respectively the first column of U and the first column of V multiplied by
A(1,1).

After K iterations of these two steps, a denoised patch Ddy is available for each patch position
i, where D is the final updated dictionary. The third and last (aggregation) step consists in
merging the denoised versions of all patches of the image in order to obtain a global estimate.
This is achieved by solving the minimization problem

U = Argmin \|Uy — U2 + ZH]jdl —R;Uo||3,
U()ERM i

by the closed formula

-1
U= </\I +y RiTRi> (AU +> RY ﬁdi> . (42)

This amounts for each pixel to average its initial noisy value with the average of all estimates
obtained with all patches containing it. The parameter A controls the tradeoff between these two
values and thus measures the fidelity to the initial noisy image.

Mairal et al. [103] proposed to directly extend the algorithm to vector valued images instead
of converting the colour image to another colour system decorrelating geometry and chromaticity.
The previous algorithm is applied on column vectors which are a concatenation of the R,G,B
values. In this way, the algorithm, when updating the dictionary, takes into account the inter-
channel correlation. We shall detail the algorithm for grey level images, the colour version simply
requires an adaptation of the Euclidean norm to the colour space.
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Algorithm 10 K-SVD algorithm for grey level images

Input: noisy image @, U in vector form, noise standard deviation o.

Input: 2, dimension of patches (number of pixels).

Input ng,., dictionary size, K iteration number of the dictionary optimization.
Input: initial patch dictionary Dj,; as matrix with ng;. columns and 2 rows.
Output: output image in vector form U.

2

Collect all noisy patches of dimension 2 in column vectors R;U

Set f) = Dinit-
for k=1 to K do

An ORMP is applied to the vectors R;U in a such way that a vector of sparse coefficients &;
is obtained verifying R;jU =~ Da;.

Introduce w; = {i|a;i(l) #0};
For i € w;, obtain the residue

eé = Riﬁ — f)di + Cildi(l) ;
Put these column vectors together in a matrix E;. Values d;(l) are also assembled in a row

vector denoted by &l for i€ wy;
Update d; and &' as solutions of the minimization problem :

(dy,&") = Argmin |E; — dja'|% .
dl,al

A truncated SVD is applied to the matrix E;. It provides partially U, V (orthogonal matrices)

and A (filled in with zeroes except on its first diagonal), such that E; = UAV”. Then d; is

defined again as the first column of U and &' as the first column of V multiplied by A(1,1).
end for

Aggregation: for each pixel the final result U in vector form is obtained thanks to the weighted
aggregation:

-1
U= (AI +) R§Ri> (Af] +> Rgﬁozi> .
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5.8 BM3D

BM3D is a sliding window denoising method extending DCT denoising and NL-means. Instead
of adapting locally a basis or choosing from a large dictionary, it uses a fixed basis. The main
difference with DCT denoising is that a set of similar patches are used to form a 3D block which
is filtered by using a 3D transform, hence its name Collaborative filtering. The method has four
steps: a) finding the image patches similar to a given image patch and grouping them in a 3D
block b) 3D linear transform of the 3D block; c) shrinkage of the transform spectrum coefficients;
d) inverse 3D transformation. This 3D filter therefore filters out simultaneously all 2D image
patches in the 3D block. By attenuating the noise, collaborative filtering reveals even the finest
details shared by the grouped patches. The filtered patches are then returned to their original
positions and an adaptive aggregation procedure is applied by taking into account the number
of kept coefficients per patch during the thresholding process (see section 4 for more details on
aggregation).

The first collaborative filtering step is much improved in a second step using an oracle Wiener
filtering. This second step mimics the first step, with two differences. The first difference is that
it compares the filtered patches instead of the original patches like described in section 4. The
second difference is that the new 3D group (built with the unprocessed image samples, but using
the patch distances of the filtered image) is processed by an oracle Wiener filter using coefficients
from the denoised image obtained at the first step to approximate the true coefficients given by
Theorem 1. The final aggregation step is identical to those of the first step.

The algorithm is extended to colour images through the Y,U,V, colour system. The previous
strategy is applied independently to each channel with the exception that similar patches are
always selected by computing distances in the channel Y.
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Algorithm 11 BM3D first iteration algorithm for grey images.

Input: noisy image u, o, noise standard deviation.
Output: output basic estimation 4, of the denoised image.

Set parameter kK X k = 8 x 8: dimension of patches.

Set parameter A x A = 39 x 39: size of search zone in which similar patches are searched.

Set parameter N,,q, = 16 : maximum number of similar patches retained during the grouping
part.

Set parameter s = 3: step in both rows and columns between two reference patches.

Set parameter A\3p = 2.7: coefficient used for the hard thresholding.

Set parameter 7 = 2500 (if 0 > 40,7 = 5000): threshold used to determine similarity between
patches.

for each pixel i, with a step s in rows and columns do
Select a square reference patch P around i of size & X k.

Look for square patches Q in a square neighborhood of i of size A x A having a distance to P
lower than 7.

if there are more than N,,,, similar patches then
keep only the N,,4. closest similar patches to P according to their Euclidean distance.
else
keep 2P patches, where p is the largest integer such that 2P is smaller than the number of
similar patches
end if

A 3D group P(P) is built with those similar patches.
A bi-orthogonal spline wavelet (Bior 1.5) is applied on every patch contained in P(P).

A Walsh-Hadamard transform is then applied along the third dimension of the 3D group
P(P).

A hard thresholding with threshold A3po is applied to P(p) An associated weight wp is
computed :
-1
wp={ WNe)— Np=1
1 Ng=0

where Np is the number of retained (non-zero) coefficients.

The estimate ﬁ?’f) for each pixel i in similar patches Q of the 3D group ”P(]B) is then obtained
by applying the inverse of the Walsh-Hadamard transform along the third dimension, followed
by the inverse of the bi-orthogonal spline wavelet on every patches of the 3D group.

end for

for each pixel i do
Aggregation: recover the denoised value at i by averaging all estimates of all patches Q in all
3D groups P(P) containing i, the weights being given by the w .

end for
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Algorithm 12 BM3D second iteration algorithm for grey images.

Input: noisy image w, o, noise standard deviation.
Input: basic estimation u; obtained at the first step.
Output: final denoised image .

Set parameter k X K = 8 x 8 (up to 12 for high noise level): dimension of patches.

Set parameter A x A = 39 x 39: size of search zone in which similar patches are searched.

Set parameter N,,,, = 32: maximum number of similar patches retained during the grouping
part.

Set parameter s = 3: step in both rows and columns between two reference patches.

Set parameter 7 = 400 (if o > 40,7 = 3500): threshold used to determinate similarity between
patches.

for each pixel i, with a step s in rows and columns do

Take the square reference patches P and P; centered at i, of size k X  in the initial and basic
estimation images.

Look for square patches Ql in a square neighborhood of i of size zsize x zsize having a
distance lower than 7 in the basic estimate image ;.

if there are more than N,,,, similar patches then
keep only the N,,q. closest similar patches to P according to their Euclidean distance.
else
keep 2P patches, where p is the largest integer such that 27 is smaller than the number of
similar patches
end if

Two 3D groups P(P) and P(P,) are built with those similar patches, one from the noisy
image u and one from the basic estimate image ;.

A 2D DCT is applied on every patch contained in 77(]5) and P(I:’l).
A Walsh-Hadamard transform is then applied along the third dimension of P(P) and P(P,).

Denoting by 73p the 3D transform (2D DCT followed by the Walsh-Hadamard transform)

applied on the 3D group, compute the Wiener coefficient
I7ap (P(P1)]?

Wp = —— =5 5.
P |T3p (P(P1)|?+02

The Wiener collaborative filtering of P(P) is realized as the element-by-element multiplication

of the 3D transform of the noisy image 73p (P (P)) with the Wiener coefficients w .

An associated weight w is computed :

-2
we — { (lwpll2) ™ llwplla >0
" 1 lwpll2 =0

The estimate 1159”3 for each pixel i in similar patches Q of the 3D group P(f’) is then obtained
by applying the inverse of the 1D Walsh-Hadamard transform along the third dimension,
followed by the inverse of the 2D DCT on every patch of the 3D group.

end for

for each pixel i do
Aggregation: Recover the denoised value 4(i) at i by averaging all estimates of patches Q in
all 3D groups P(P) containing i, using the weights w B

end for
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Here we described the basic implementation given in its seminal paper, and which will also
be used in the comparison section. Yet, BM3D has several more recent variants that improve
its performance. Like for NL-means, there is a variant with shape-adaptive patches [40]. In this
algorithm denominated BM3D-SAPCA, the sparsity of image representation is improved in two
aspects. First, it employs image patches (neighborhoods) which can have data-adaptive shape.
Second, the PCA bases are obtained by eigenvalue decomposition of empirical second-moment
matrices that are estimated from groups of similar adaptive-shape neighborhoods. This method
improves BM3D especially in preserving image details and introducing very few artifacts. The
anisotropic shape-adaptive patches are obtained using the 8-directional LPA-ICI techniques [80].

The very recent development of BM3D is presented in [79], [43], where it is generalized to
become a generic image restoration tool, including deblurring.

5.9 The piecewise linear estimation (PLE) method

The ambitious Bayesian restoration model proposed in [155] and [156] is a general framework
for restoration, including denoising, deblurring, and inpainting. An image is decomposed into
overlapping patches P, = A;P; + N; where A, is the degradation operator restricted to the patch
i, P; is the original patch, P, the degraded one, and N; the noise restricted to the patch. Since we
are studying only the denoising problem, we shall take for A; the identity. The (straightforward)
extension including a linear perturbation operator is out of our scope.

The patch density law is modeled as a mixture of Gaussian distributions {N (u, Cr) hi<k<i
parametrized by their means pj; and covariance matrices Cg. Thus each patch P, is assumed
independently drawn from one of these Gaussians with an unknown index k and a density function

p(PL) _ 1 - e*%(Pi*Hk)Tc;;il(Pz‘*Hk).

(2m) % | O |
Estimating all patches P; from their noisy observations P; amounts to solve the following problems:

e to estimate the Gaussian parameters (s, Cr)1<k<k from the degraded data P;;
e to identify the index k; of the Gaussian distribution generating the patch P;;

e to estimate P; from its corresponding Gaussian distribution (p,, Cy,) and from its noisy
version P;.

In consequence PLE [156]) has two distinct steps in the estimation procedure. In an E-step (E
for Estimate), the Gaussian parameters (uy, Ci)r are known and for each patch the maximum a
posteriori (MAP) estimate PF is computed with each Gaussian model. Then the best Gaussian
model k; is selected to obtain the estimate P; = I:’Zk

In the M-step (M for Model), the Gaussian model selection k; and the signal estimates fl are
assumed known for all patches ¢, and permit to estimate again the Gaussian models (px, Cr)1<k<k-
According to the terminology of section 4.2, this section gives the oracle permitting to estimate
in the E-step the patches by a Wiener type filter.

For each image patch with index 7 the patch estimation and its model selection is obtained by
maximizing the log a-posteriori probability P(P; | P;, k),

(Pi ki) = argn[})%xlog]P’(Pi | P, Ck) (43)
= argmax (10gP(Pi | Pi, Ci) + log P(P; | Ck)) (44)
= argin (HPi—Pz‘||2+‘72(Pi_Mk)Tclzl(Pi—Mk)+0210g‘ck|> (45)
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where the second equality follows from the Bayes rule and the third one assumes a white Gaussian
noise with diagonal matrix oI (of the dimension of the patch) and P; ~ A (ju, Cy). This mini-
mization can be made first over P;, which amounts to a linear filter, and then over k, which is a
simple comparison of a small set of real values. The index k being fixed, the optimal PF satisfies

Pk = argrr}lgivn (HPZ — Pj|]> + 0*(P; — ux)"CL (P — i) + log |Ck|)
and therefore

PF =+ I+ 020,2.1)71(132' — Hk)s

which is the formula (18) already seen in section 5.2. Then the best Gaussian model k; is selected
as
ki = argmin (||PF = P2 4+ 0*(PF = ju) "o (PF = i) + log |Ci ).

Assuming now that for each patch P; its model k; and its estimate P, are known, the next
question is to give for each k the maximum likelihood estimate for (g, Cx) knowing all the patches
assigned to the k-th cluster Cy, namely,

(k, Ck) = arg max log P({ P, }icc, | 1k, Cr).
1k, Cr

This yields the empirical estimate

1 - 1 . .
=~ NP Ch=— STP = )P — )T
e = o > ey > (P — i) (P — )

1€Cx 1€Cy

which are the estimates (19) also used in section 5.2.

Finally the above MAP-EM algorithm is iterated and the authors observe that the MAP
probability of the observed signals P({P;}; | {P;}s, {pux, C }1) always increases. The clusters and
the patch estimates converge. Nevertheless, this algorithm requires a good initialization. Noticing
that having the adequate Gaussians describing the patch space amounts to have a good set of PCA
bases for intuitive patch clusters, the authors create 19 orthogonal bases in the following way: one
of them, say & = 0, is the classic DCT basis and corresponds to the “texture cluster”. The others
are obtained by fixing 18 uniformly sampled directions in the plane. For each direction, PCA is
applied to a set of patches extracted from a synthetic image containing an edge in that direction.
The PCA yields an oriented orthonormal basis. In short, the initial clusters segment the patch
set in 18 classes of patches containing an edge or an oriented texture, and one class containing the
more isotropic patches.

The study in this paper gives an interpretation of the patch dictionary methods such as K-
SVD and fuses them with Bayesian methods and the Wiener method. In particular the paper
shows how the K-SVD method actually learns patches that are quite similar to oriented patches
obtained by the above procedure, as illustrated in Fig. 12. This analysis structures the synthetic
view proposed in section 7.

6 Comparison of denoising algorithms

In this section we shall compare the following “state of the art” denoising algorithms: the sliding
DCT filter as specified in Algorithm 3, the wavelet neighborhood Gaussian scale mixture (BLS-
GSM) algorithm, as specified in Algorithm 9, the classical vector valued NL-means as specified
in Algorithm 4, the BM3D algorithm as specified in Algorithms 11 and 12, the K-SVD denoising
method as described in Algorithm 10 and the Non-local Bayes algorithm as specified in Algorithm
5. These algorithms have been chosen for two reasons. First they have a public and completely
transparent code available, which is in agreement with their present description. Second, they all
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Algorithm 13 Piecewise linear estimation (PLE)

Input: noisy image @ given by the family of its noisy patches (]51)1, initial set of 19 Gaussian
models N (puy, Cr) obtained as: a) the 18 PCAs of the patches of 18 synthetic edge images, each
with a different orientation; b) a Gaussian model with a diagonal covariance matrix on the DCT
basis.

Output: denoised image @

E-STEP .
for all patches P; of the noisy image do

for each k do
Estimate the MAP of P; knowing k: PF = puy + (I+ 02(3121)_1?1'.
end for
Select the best Gaussian model k; for P; as
ki = argmin (|[PF = Pi|* + 02(PF — i) "C (PF = ) + 10g i)
Obtain the best estimate of P; knowing the Gaussian models (i, Cy), P, = Piki.
end for

M-STEP
for all k£ do
Compute the expectation jy and covariance matrix Cy, of each Gaussian by
Pk = ﬁ Zieck P, Gy = #ciq Zieck(Pi — i) (P — )™
end for
Iterate E-STEP and M-STEP
Aggregation: Obtain the pixel value of the denoised image u(i) as a weighted average of all
values of all denoised patches P; which contain i.

L L LA
(b) (c)

Figure 12: Taken in [156], this figure shows : (a) typical dictionary atoms learnt from the classic
image Lena with K-SVD; (b)-(d) the numerical procedure to create one of the oriented PCAs; (b)
a synthetic edge image. Patches 8 x8 touching the edge are used to calculate an initial PCA basis;
(c) the first 8 patches of the PCA basis (ordered by the larger eigenvalue).
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represent distinct denoising principles and therefore illustrate the methodological progress and the
diversity of denoising principles.

The comparison, using when possible the public IPOL algorithms http://www.ipol.im/, will
be based on four quantitative and qualitative criteria: the visualization of the method noise,
namely the part of the image that the algorithm has taken out as noise, the visual verification of
the noise to noise principle, and the mean square error or PSNR tables. Last but not least the
visual quality of the restored images must of course be the ultimate criterion. It is easily seen that
a single criterion is not enough to judge a restoration method. A good denoising solution must
have a high performance under all mentioned criteria.

6.1 “Method noise”

The difference between the original image and its filtered version shows the “noise” removed by the
algorithm. This procedure was introduced in [19] and this difference was called method noise by the
authors. The authors pointed out that the method noise should look like a noise, at least in case
of additive white noise. A visual inspection of this difference tells us which geometrical features or
details have been unduly removed from the original. Only human perception is able to detect these
unduly removed structures in the “method noise”. Furthermore for several classical algorithms
like the Gaussian convolution, anisotropic filters, neighborhood filters or wavelet thresholding
algorithms, a closed formula permits to analyze the method noise mathematically and thus gives
an explanation of observed structured image differences when applying the denoising method [24].
Such an analysis is unfortunately not available and not easy for the state of the art algorithms
which are compared in this section. The degree of complexity of each method does not allow for a
mathematical study of the method noise. Therefore the evaluation of this criterion will be based
only on visual inspection.

When the standard deviation of the added noise is higher than contrast in the original image,
a visual exploration of the method noise is nevertheless not reliable. Image features in the method
noise may be hidden in the removed noise. For this reason, the evaluation of the method noise
should not rely on experiments where a white noise with standard deviation larger than 5 or 10
has been added to the original.

Fig. 13 displays the method noise for the state of the art algorithms being compared in this
section, when a Gaussian white noise of standard deviation ¢ = 5 has been added. The image
differences have been rescaled from [—40,40] to [0,255] for visualization purposes, and values
outside this range have been saturated. By a first visual inspection, it is noticed that all methods
have a difference similar to a white noise. This is an outstanding properties of these algorithms,
which is not shared by classical denoising techniques such as anisotropic filtering, total variation
minimization or wavelet thresholding (see [17] for a more detailed study). It is also immediately
observed that the magnitude of the method noise of NL-means and K-SVD is larger than for the
rest of the methods. This is corroborated by the standard deviation of each residual noise (see Fig.
13), which is around 5.7 for NL-means and K-SVD, around 4.7 for DCT denoising and around 4.25
for the other algorithms. DCT-denoising, BLS-GSM, BM3D and NL-Bayes keep the transform
coeflicients that are larger than the ones predicted by noise. This explains why they remove little
noise in textured or edge regions. This fact can be easily noticed in Fig. 14 where a piece of the
residual noise of Fig. 13 has been enlarged. The amplitude of the noise removed by NL-means
and K-SVD is uniform all over the image, while it depends on the underlying image for the rest
of the algorithms.

6.2 The “noise to noise” principle

The noise to noise principle, introduced in [23], requires that a denoising algorithm transforms
white noise into white noise. This paradoxical requirement seems to be the best way to characterize
artifact-free algorithms. The transformation of a white noise into any correlated signal creates
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Figure 13: Display of method noise. The noisy image was obtained by adding a Gaussian white
noise of standard deviation 5. From top to bottom and left to right: slightly noisy image, DCT
sliding window (std = 4.69), BLS-GSM (std = 4.28), NL-means (std = 5.78), K-SVD (std = 5.67),
BM3D (std = 4.25) and Non-local Bayes (std = 4.28). All methods have a difference similar to
a white noise even if the magnitude of the NL-means and K-SVD differences is larger. This is
corroborated by the standard deviation of each residual noise. Due to the thresholding nature
of DCT, BLS-GSM, BM3D and NL-Bayes, which alter little the coefficients larger than the ones
predicted by noise, noise is not removed in textured and edge zones. This can be easily noticed in
Fig. 14 where a piece of the residual noises has been enlarged.

structure and artifacts. Only white noise is perceptually devoid of structure, as was pointed out
by Attneave [6].

The noise to noise of classical denoising algorithms was studied in [23], where it was shown
that neighborhood filters and, asymptotically, NL-means transform a white noise into a white
noise. The convolution with a Gauss kernel keeps the low frequencies and cancels the high ones.
Thus, the filtered noise actually shows big grains due to its prominent low frequencies. Noise
filtered by a wavelet or DCT thresholding is no more a white noise. The few coefficients with a
magnitude larger than the threshold are spread all over the image. The pixels which do not belong
to the support of one of these coefficients are set to zero. The visual result is a constant image
with superposed wavelets or cosines if the DCT is used. The mathematical analysis of the rest of
algorithms is not feasible due to its degree of complexity. Thus, only a visual inspection of this
filtered noise is possible.

The methodology adopted to process the noise to noise and to show it is the following:

e Since most recent methods process colour images (except BLS-GSM), the noise to noise is
applied on a colour flat image, i.e. an image with three channels with slightly different?
values: RGB = (127,128,129);

e To reduce the variations due to the random nature of the noise, the tests are performed on

4Values are different on each channel in order to force the algorithm to consider this image as a colour image,
and not a grey image with a single channel.



relatively large noise images. The chosen size is 1024 x 1024. The PSNR and RMSE results
become then fairly independent of the simulated noise;

e Noise is added on each channel independently. It therefore is a colour noise, and its standard
deviation is equal to 30 on each channel of the flat original image;

e All compared algorithms are processed on this noisy image;

e The denoised image is displayed. The mean on every channel is set to 128, and the difference
to this mean is enhanced by a factor 5. A small part with size 256 x 256 of the denoised
image is shown after zoom in in 15.

The results in PSNR and RMSE are summarized in the following table:

H Method H PSNR \ RMSE H
NL-Bayes 45.45 1.36
BM3D 45.03 1.43
NL-means 41.45 2.16

TV denoising 41.06 2.26
DCT denoising || 40.91 2.30
K-SVD 38.44 3.05

The “order” of performance of the methods is almost respected, except for TV denoising,
which shows a really good result compared to K-SVD. Fig. 15 displays the filtered noise images
by several state of the art algorithms.

As expected, threshold-based methods present noticeable artifacts, in particular DCT denoising
and BM3D. The NL-means result reflects the size of the search zone, and therefore leaves behind a
low-frequency oscillation. Despite its good results, TV denoising presents a lot of artifacts which
do not look like noise, and are uglier than the K-SVD artifacts. Only NL-Bayes has no artifacts.
Indeed, it detects flat patches and replaces them by their mean. This trick could actually be
applied to all algorithms. Last but not least, each method leaves a sizeable low-frequency noise,
which could be removed with a multi-scale approach.

6.3 Comparing visual quality

The visual quality of the restored image is obviously a necessary, if not sufficient, criterion to judge
the performance of a denoising algorithm. It permits to control the absence of artifacts and the
correct reconstruction of edges, texture and fine structure. Figures 17-19 display the noisy and
denoised images for the algorithms under comparison for noise standard deviations of 20, 30 and
40.

Figure 17 presents an image with straight edges and flat and fine structures with a noise
of standard deviation 20. The main artifacts are noticeable in the DCT, BLS-GSM and K-SVD
denoised images. These are the most local algorithms and therefore have more trouble in removing
the low frequencies of the noise. As a consequence, the denoised images present many low frequency
colour artifacts in flat and dark zones. These artifacts are noticeable for all these algorithms even
if all use a different strategy to deal with colour images. DCT uses the Y,U,V,, K-SVD a vector
valued algorithm and BLS-GSM is applied independently to each RGB component. NL-means
does not suffer of these noise low frequency problems, but it leaves some isolated noise points on
non-repetitive structures, mainly on corners. These isolated noise points could be attenuated by
using the Y,U,V, colour space instead of the vector valued algorithm. In this experience, BM3D
and Non-Local Bayes give a similar performance and superior to the rest of algorithms.

Figures 18 and 19 illustrate again the low frequency colour artifacts of DCT, BLS-GSM and
K-SVD. In these figures, DCT and BLS-GSM also suffer of a strong Gibbs effect near all image
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boundaries. This Gibbs effect is nearly not noticeable in the denoised image by K-SVD, since the
use of the whole dictionary permits to better reconstruct edges when the right atoms are present
in the dictionary. The NL-means denoised image has no visual artifacts but is more blurred than
those given by BM3D and Non-Local Bayes, that have a clearly superior performance to the rest
of the algorithms. The BM3D denoised image has some Gibbs effect near edges, which sometimes
degrades the visual quality of the solution. Non-Local bayes image shows no artifacts. It preserves
often better textures than BM3D, by which the trees and vegetation can be slightly blurred by
the use of the linear transform threshold.

In short, the visual quality of DCT, BLS-GSM and K-SVD is inferior to that of NL-means,
BM3D and NL-Bayes, because of strong colour noise low frequencies in flat zones, and of a Gibbs
effect. NL-means does not show noticeable artifacts but the denoised image is more blurred than
those of BM3D and Non-Local Bayes. BM3D still has some Gibbs effect due to the use of a single
basis for all pixels and a slightly inferior noise reduction, compared to Non-Local Bayes.

6.4 Comparing by PSNR

The mean square error is the square of the Euclidean distance between the original image and its
estimate. In the denoising literature an equivalent measurement, up to a decreasing scale change,
is the PSNR, ,
255
PSNR =10log,, <MSE) .

These numerical quality measurements are the most objective, since they do not rely on any visual
interpretation. Tables 5 and 6 display the PSNR of state of the art denoising methods using the
images in Fig. 16 and several values of ¢ from 2 to 40.

Before jumping to conclusions, we would like to point out that such a PSNR comparison is
just informative, and cannot lead to an objective ranking of algorithms. Indeed, what is really
needed is a comparison of denoising principles. To compare them, these denoising principles must
be implemented in denoising recipes containing several ingredients. Since the PSNR difference
between recipes is tight, the way such or such generic tool is implemented, and the degree of
sophistication with which each principle is implemented do matter. For example, two of our
readers have pointed out to us® that an experimental analysis carried out exclusively on color
images does not permit a comparison between the different strategies devised to take advantage
of spatial redundancy. They suggest to complement the denoising results on color images with
experiments on grayscale images. Then it would be possible to: 1) compare the degree of success of
these different denoising principles in exploiting spatial redundancy; 2) evaluate the effectiveness
of the various ways in which these grayscale algorithms are extended to color data.

In short, these authors do not share our analysis herewith, and the way conclusions can be
drawn from the experimental results, because these results are very much influenced by the way
color data is treated while much of the conclusions are applied about the relative effectiveness in
exploiting spatial redundancy.

For the same reasons, these authors also disagree with the taxonomy summarized in table 7,
where it seems that the extension to color is to be considered as a feature of a particular algorithm.
Some methods are applied to color data in a very simple non-adaptive way and thus cannot be
expected to fully decorrelate the color channels. This is for instance the case of BM3D, which uses
a YUV/Opp color transformation. Data-adaptive color transformations for multispectral data are
considered in [42]. This adaptive method provides substantially better results than a standard
color transformation.

Another reason for being cautious, is that all methods with some existence have actually
variants, and we are using the basic algorithms as they were announced in their seminal paper.
For example, it is shown in [76] that BM3D can be slightly improved for heavy noise > 40 by
changing the method parameters.

5 Alessandro Foi, Vladimir Katkovnik, personal communication.
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I [ 0 =2 |

NL-Bayes || BM3D || BLS-GSM || K-SVD || NL-means || DCT denoising
Alley 45.42 44.95 - 41.51 42.75 44.58
Computer 45.96 45.22 44.69 44.52 44.03 44.54
Dice 49.00 48.86 48.59 47.79 48.51 48.39
Flowers 47.77 47.31 47.12 47.09 46.36 47.05
Girl 47.56 47.40 47.14 47.28 46.96 46.76
Traffic 45.33 44.56 44.15 43.80 43.55 44.26
Trees 43.51 43.07 - 42.05 42.22 42.95
Valldemossa. 45.17 44.68 44.41 40.08 43.33 44.50
[ Mean || 46.22 [ 4576 | - [ 4427 [ 4471 ] 45.37 |
[ | o=5 |
NL-Bayes || BM3D || BLS-GSM || K-SVD || NL-means || DCT denoising
Alley 39.24 38.95 - 38.45 37.18 38.37
Computer 40.69 39.98 39.30 39.58 38.86 39.03
Dice 46.09 45.80 45.21 45.27 45.12 45.22
Flowers 43.44 42.99 42.76 43.09 42.05 42.78
Girl 44.26 44.03 43.70 43.59 43.44 43.36
Traffic 39.70 38.67 38.10 38.75 37.50 38.21
Trees 36.70 36.10 - 35.61 34.69 35.76
Valldemossa. 38.73 38.33 38.02 37.87 35.94 37.94
[ Mean || 41.11 [ 40.61 | - [ 4028 [ 3935 40.08 |
[ | g =10 |
NL-Bayes || BM3D || BLS-GSM || K-SVD || NL-means || DCT denoising
Alley 35.05 34.82 - 34.29 33.53 34.22
Computer 36.58 36.28 35.47 35.79 35.44 35.34
Dice 43.30 43.02 42.21 41.71 42.06 42.22
Flowers 39.52 39.49 39.10 39.31 38.49 39.03
Girl 41.69 41.45 41.14 40.29 40.42 40.55
Traffic 34.93 34.54 33.92 34.69 33.89 34.11
Trees 36.70 36.10 - 35.61 29.42 30.92
Valldemossa. 38.73 38.33 38.02 37.87 32.02 33.45
[ Mean || 37.06 [ 36.83 | - [ 3631 [ 3566 36.23 |

Table 5: PSNR table for o = 2, 5 and 10. Only the three first digits are actually significant; the
last one may vary with different white noise realizations.

In short, the following PSNR comparison on color images must be taken for what it is; it gives
some hints and these hints depend on the particular implementation of the denoising principles.
We observe in the results that DCT denoising, GLS-GSM, K-SVD and NL-means have a similar
PSNR. The relative performance of the methods depends on the kind of image and on noise level
0. On average, K-SVD and BLS-GSM are slightly superior to the other two, even if this is not the
case visually, where K-SVD and BLS-GSM have a poor visual quality compared to NL-means. In
all cases, BM3D and Non-local Bayes have a better PSNR performance than the others. Because
of a superior noise reduction in flat zones and the presence of less artifacts of Non-local Bayes, the
PSNR of BM3D is slightly inferior to Non-local Bayes. BM3D seems to retain the best conservation
of detail. Some ringing artefacts near boundaries can probably be eliminated by the same trick as
Non-local Bayes, namely detecting and giving a special treatment to flat 3D groups.

7 Synthesis

We have showed that all methods either already use, or should adopt the same three generic
denoising tools described in section 4. Since all methods denoise not just the pixel, but a whole
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o=20
H H NL-Bayes || BM3D [[ BLS-GSM [ K-SVD [ NL-means [ DCT denoising H

Alley 31.36 31.23 - 30.55 29.94 30.21
Computer 33.08 32.71 31.89 31.96 31.59 31.45
Dice 40.19 39.93 39.00 37.23 38.17 38.67
Flowers 35.87 35.85 35.34 35.24 34.56 34.89
Girl 38.92 38.71 38.49 36.36 36.81 37.27
Traffic 31.14 30.83 30.14 30.70 30.12 29.98
Trees 27.22 26.92 - 26.88 26.28 26.27
Valldemossa || 29.81 29.57 26.97 29.08 28.37 28.91
[ Mean || 3345 [ 3322 | - [ 3225 [ 3198 ] 32.20 |
I I o =30 J
I | NL-Bayes [| BM3D || BLS-GSM [ K-SVD [[ NL-means [[ DCT denoising ||
Alley 29.42 29.33 - 28.60 27.58 28.25
Computer 31.00 30.67 29.90 29.84 28.98 29.20
Dice 38.20 37.88 37.05 36.52 37.18 35.89
Flowers 33.67 33.73 33.19 33.54 32.66 32.46
Girl 37.12 36.97 36.91 35.38 35.54 34.67
Traffic 29.08 28.87 28.20 28.60 27.40 27.87
Trees 24.95 24.64 - 24.52 23.29 23.83
Valldemossa || 27.51 27.30 26.97 26.80 25.55 26.48
[ Mean || 31.37 [ 3117 | - [ 3048 [ 2977 ] 29.83 |
I I o =40 J
“ H NL-Bayes “ BM3D “ BLS-GSM “ K-SVD “ NL-means “ DCT denoising H
Alley 28.16 28.08 - 27.29 26.30 27.14
Computer 29.55 29.15 28.52 28.25 27.31 27.44
Dice 36.91 36.28 35.50 34.49 35.31 33.06
Flowers 31.94 32.10 31.68 31.90 30.99 30.80
Girl 36.09 35.62 35.61 33.73 34.03 32.01
Traffic 27.67 27.50 26.93 27.19 26.01 26.49
Trees 23.35 23.17 - 23.06 21.91 22.46
Valldemossa || 27.51 25.78 25.50 25.28 24.10 25.08
[ Mean || 30.15 [ 29.71 | - [ 2890 [ 2825 ] 28.05 |

Table 6: PSNR table for ¢ = 20, 30 and 40.

63



neighborhood, they give several evaluations for each pixel. Thus, they all use an aggregation
step. There is only one method for which the aggregation is not explicitly stated as such, the
wavelet neighborhood (BLS-GSM) algorithm. Nevertheless, a closer examination shows that it
denoises not one, but some 49 wavelet channels for a 512x512 image. The used wavelet transform
is redundant. Thus, an aggregation is implicit in its final reconstruction step from all channels.
BLS-GSM is also patch-based. Indeed, each “wavelet neighborhood” contains a 3x3 patch of a
wavelet channel, complemented with one more sample from the down-scale channel sharing the
same orientation. Thus, like the others, this algorithm builds Bayesian estimates of patches. The
difference is that the patches belong to the wavelet channels. Each one of these channels is denoised
separately, before the reconstruction of the image from its wavelet channels.

In short, even if the BLS-GSM formalization looks at first different from the other algorithms, it
relies on similar principles: it estimates patch models to denoise them, and aggregates the results.
But, it also is the only multiscale algorithm among those considered here. Indeed, it denoises the
image at all scales. Furthermore, it introduces a scale interaction. These features are neglected in
the other algorithms and might make a significant difference in future algorithms.

It may be asked why its performance is slightly inferior to that of the current state of the art
algorithms. First of all, this algorithm, like many wavelet based algorithms, has not proposed
a good solution to deal with colour. Applying the colour space tool of section 4.3 can probably
bring a PSNR improvement. The paper does not specify if there is an aggregation step, but a first
aggregation step is possible (the second aggregation being implicit in the reconstruction step from
all channels, that are redundant). Indeed, each wavelet channel patch contains ten coefficients,
and these coefficients are therefore estimated ten times. These estimates might be aggregated.

7.1 The synoptic table

Table 7 shows a synopsis of the ten methods that have been thoroughly discussed. The classifica-
tion criteria are:

The denoising principle of the method. Our task here is to show that, in spite of the different
language used by each method, the underlying principles actually converge. The dominant prin-
ciple is to compute a linear minimum least square estimator (LMMSE) after building a Bayesian
patch model. As a matter of fact, even if this is not always explicit, all methods follow very
closely the same LMMSE estimator principle. For example the DCT threshold is nothing but a
Wiener thresholding version of the Bayesian LMMSE. This threshold is used because the DCT
of the underlying noiseless image is actually unknown. The same argument applies for Nonlocal
Means, which was interpreted as an LMMSE in section 5.1. A close examination of K-SVD can
convince a practitioner that this algorithm is very close to EPL, PLOW or EPLL, and conversely.
Indeed, the patch clustering performed in these three algorithms interprets the patch space as
a redundant dictionary. Each cluster is treated by a Bayesian estimator as a Gaussian vector,
for which an orthogonal eigenvector basis is computed. This basis is computed from the cluster
patches by PCA. Thus, EPL, PLOW and EPLL actually deliver a dictionary, which is the union
of several orthogonal bases of patches. EPL, PLOW and EPLL select for each noisy patch one of
the bases, on which the patch will be sparse. In short, like K-SVD, they compute for each patch
a sparse representation in an over-complete dictionary. In this argument, we follow the simple
and intelligent interpretation proposed with the PLE method in [156], [155]. Their method was
summarized by the authors as follows:

An image representation framework based on structured sparse model selection is intro-
duced in this work. The corresponding modeling dictionary is comprised of a family
of learnt orthogonal bases. For an image patch, a model is first selected from this
dictionary through linear approximation in a best basis, and the signal estimation is
then calculated with the selected model. The model selection leads to a guaranteed
near optimal denoising estimator. The degree of freedom in the model selection is
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equal to the number of the bases, typically about 10 for natural images, and is signifi-
cantly lower than with traditional over-complete dictionary approaches, stabilizing the
representation.

From the algorithmic viewpoint, EPLL is a variant of PLE, but used in a different setting.
The comparison of these two almost identical Gaussian mixture models is of particular interest.
EPLL is applied to a huge set of patches (of the order of 10'°) united in some 200 clusters. PLE
is applied with 19 clusters learnt each from some 64 patches. Thus, the open question is: how
many clusters and how many learning patches are actually necessary to obtain the best PSNR?
The disparity between these figures is certainly too large to be realistic.

We must finally wonder if transform thresholding methods fit into the united view of all algo-
rithms. The Bayesian-Gaussian estimate used by most mentioned algorithms can be interpreted
as a Wiener filter on the eigenvector basis of the Gaussian. It includes sometimes a threshold
(to avoid negative eigenvalues for the covariance matrix of the Gaussian vector). Thus, the only
difference between Bayesian-Gaussian methods and the classic transform thresholding is that in
the Bayesian methods the orthogonal basis is adapted to each patch. Therefore, they appear to be
a direct extension of transform thresholding methods, and have logically replaced them. BM3D
combines several linear transform thresholds (2D-bior 1.5, 2D-DCT, 1D-Walsh-Hadamard), ap-
plied to the 3D block obtained by grouping similar patches. Clearly, it has found by a rather
systematic exploration the right 2D orthogonal bases, and therefore does not need to estimate
them for each patch group.

We shall now reunite two groups of methods that are only superficially different. Non-local
Means, Non-local Bayes, Shotgun-NL, and BM3D denoise a patch after comparing it to a group of
similar patches. The other five patch-based Bayesian methods do not perform a search for similar
patches.

These other patch methods, PLE, PLOW, EPLL, BLS-GSM and K-SVD, process globally
the “patch space” and construct patch models. Nevertheless, this difference is easily reduced.
Indeed, EPL, PLOW and EPLL segment the patch space into a sufficient number of clusters, each
one endowed with a rich structure (an orthonormal basis). Thus, the patches contributing to the
denoising of a given patch estimation are not compared to each other, but they are compared to the
clusters. Similarly, the dictionary based methods like K-SVD propose over-complete dictionaries
learnt from the image or from a set of images. Finding the best elements of the dictionary
to decompose a given patch, as K-SVD does, amounts to classify this patch. This is what is
suggested by the authors of PLE in [156]: the dictionary is a list of orthogonal bases which are
initiated by sets of oriented edges. Each basis is therefore associated with an orientation (plus one
associated with the DCT). Thus PLE is very similar to BLS-GSM, which directly applies a set of
oriented filters. Another link between the Bayesian method and sparse modeling is elaborated in
[159].

Patches The second column in the classification table 7 indicates the number of patches used
for the denoising method, and where they are found. The trivial DCT uses only the current patch
to denoise it; Non-local Means, Non-local Bayes and BM3D compare the reference patch with a
few hundred patches in its spatial neighborhood; PLE, PLOW, BLS-GSM and K-SVD compare
each noisy patch to a learnt model of all image patches; finally Shotgun-NL and EPLL involve
in the estimation a virtually infinite number of patches. Surprisingly enough, the performance of
all methods are relatively similar. Thus, the huge numbers used to denoise in Shotgun-NL and
EPLL clearly depend on the fact that the patches were not learnt from the image itself, and their
number can arguably be considerably reduced.

Size (of patches) The third column in our synoptic table compares the patch sizes. All methods
without an exception try to deduce the correct value of a given pixel i by using a neighborhood of
i called patch. This patch size goes from 3 x 3 to 8 x 8, with a strong dominance of 8 x 8 patches.
Nevertheless, the size of the patches obviously depends on the amount of noise and should be
adapted to the noise standard deviation. For very large noises, a size 8 x 8 can be insufficient,
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Method Denoising principle | Patches size | Aggr. | Oracle | Colour
DCT transform threshold | one 8 yes yes yes
Non-local Means | average neighborhood | 3 yes yes no
Non-local Bayes | Bayes neighborhood | 3-7 | yes yes yes
PLOW Bayes, 15 clusters image 11 yes yes yes
Shotgun-NL Bayes 1019 patches 3-20 | yes no no
EPLL Bayes, 200 clusters | 2.10'C patches | 8 yes yes yes
BLS-GSM Bayes in GSM Image 3 yes no no
K-SVD sparse dictionary Image 8 yes yes yes
BM3D transform threshold | neighborhood | 8-12 | yes yes yes
PLE Bayes, 19 clusters Image 8 yes yes yes

Table 7: Synoptic table of all considered methods.

while for small noises small patches might be better. As a matter of fact, all articles focus on noise
standard deviations around 30 (most algorithms are tested for o between 20 and 80). There is
little work on small noise (below 10). For large noise, above 50, most algorithms do not deliver a
satisfactory result and most papers show denoising results for 20 < ¢ < 40. This may also explain
the homogeneity of the patch size.

Aggregation, Oracle, Colour A good sign of maturity of the methods is that the three generic
improvement tools described in section 4 are used by most methods. When a “no” is present in
the table on these three columns, this indicates that the method can probably be substantially
improved with little effort by using the corresponding tool. Shotgun-NL and BLS-GSM can
probably gain some decibels by aggregation and by the Oracle strategy.

The algorithms compared by their complexity and their information Current research
is focusing on getting the best ever, perhaps even the best denoising results, for ever. We have
followed this track and have completely disregarded the complexity issue in this comparison. For
example, the “shotgun” patch methods are not reproducible in acceptable time. Yet, “all is fair in
love and war”. The question of how to get the best acceptable results must be solved first, by every
possible means, before fast algorithms are devised. On the other hand, the complexity does not
seem to be a serious obstacle. Indeed, several of the mentioned algorithms are already realizable,
and five of them are even functioning online at Image Processing online http://www.ipol.im.
Among them, at least two give state of the art results. Thus, we hold the view that complexity
is not a central issue in the current debate. Another question which emerged in this study is
the amount of information needed to achieve optimal denoising. Here, we have observed that the
methods do the splits. The simplest one (DCT denoising) uses only one image patch and get
results only 1dB far away from optimal results. The classic nonlocal methods only use a larger
neighborhood of a given pixel, in spite of their “nonlocal” epithet. Then, an intermediate class
of methods uses simultaneously all image patches. The shotgun methods use virtually all existing
image patches in the world. The fact that the performance gap between them is so small seems
to indicate that all obtain a decent estimate of the “patch space” around each given image patch.
This also means that, arguably, there is enough information for that in just one image.

7.2 Conclusion

There seems to be currently only one image denoising paradigm, which generalizes and unites the
transform thresholding method with a Markovian Bayesian estimation theory. This unification is
complete when the patch space is assumed to be a Gaussian mixture, each Gaussian implicitly
giving a different adapted patch orthonormal basis.
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This method is almost optimal, and denoises satisfactorily images for an interval of standard
deviations of 5 to 40. (These figures are valid for current image formats, with range in [0, 255]).
Thin noises (below 5) and large noises (above 50) are largely unexplored. They may require new
tools or a different theory. Are they important? The answer is yes, because for several applications,
for example photogrammetry and stereovision, the precision varies like the inverse of the SNR.
Thus, even with good quality stereo pairs, it is relevant to decrease the noise level. As for large
noises, it may be argued that the only thing that really matters is the second order statistics
of natural images, and one can obtain near optimal denosing by a global Wiener filter. But all
existing filters leave behind too many artifacts and must be reconsidered for high noise.

The multiscale aspect of denoising is explored only on three dyadic scales (since most patch
methods use 8x8 patches), which may be insufficient. The success of denoising methods is only
one step forward in the statistical exploration of images, and in particular in the exploration of
the huge “patch space”. Its structure remains widely unknown, and we ignore its geometry. There
is little doubt that it is not just a sum of Gaussians, or a Gaussian scale mixture.

Last but not least, are image denoising algorithms close to achieve their optimal bounds? In
our opinion, on the ranges of noise that we have tested, the image visual improvement obtained
by state of the art denoising methods is undeniable. It is even spectacular. On movies, which
are much more redundant, this effect is still more impressive. Nevertheless, can we take the
arguments developed in [92] and [32] and conclude that the current methods are almost optimal?
The arguments given in favor of this view in [92] are very interesting, because they give a method
to estimate the optimal bounds for all patch-based methods. Nevertheless, a closer examination
shows that the existing methods are probably farther away from optimality than explained in this
paper. Indeed, all state of the art patch-based methods use the aggregation step which doubles
the size of the neighborhood effectively used in the estimation. It follows that their comparison
to the shotgun Bayesian estimate using only the knowledge of each given patch to denoise it, is
unfair to shotgun NL-means. A fair comparison would be obtained by applying a shotgun NL-
means to larger patches, namely 16x16. The question is whether this is possible, or if we face a
dimensionality curse.
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Figure 14: Enlargement of the method noise difference of Fig. 13. From top to bottom and left to
right: slightly noisy image, and the method noise for DCT sliding window, BLS-GSM, NL-means,
K-SVD, BM3D and Non-local Bayes. The amplitude of the noise removed by NL-means and
K-SVD is uniform all over the image while it is region dependent for the rest of the algorithms.
Threshold based algorithms prefer to keep noisy values nearly untouched on highly textured or
edge zones.
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Figure 15: The noise to noise principle: a three-channels colour noise image filtered by the state
of the art methods. From top to bottom and left to right: the noise image (flat, with independent
homoscedastic noise added on each channel). Then, this same image denoised by DCT sliding
window, NL-means, K-SVD, BM3D and Non-local Bayes. The more the denoised image of a noise
image looks like a noise image the better. Indeed, structured noise creates artifacts. BSM-GSM
was not compared because we lack a colour version for this algorithm. None of the methods gives
a satisfactory result: they all create a lower frequency oscillation or local artifacts for DCT and
BM3D. Only multiscale version could cope with the low frequency remaining noise.

Figure 16: A set of noiseless images used for the comparison tests.
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Figure 17: Visual quality comparison. The noisy image was obtained adding a Gaussian white
noise of standard deviation 20. From top to bottom and left to right: original, noisy, DCT sliding
window, BLS-GSM, NL-means, K-SVD, BM3D and Non-local Bayes.
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Figure 18: Comparison of visual quality. The noisy image was obtained adding a Gaussian white
noise of standard deviation 30. From top to bottom and left to right: original, noisy, DCT sliding
window, BLS-GSM, NL-means, K-SVD, BM3D and Non-local Bayes.
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Figure 19: Comparison of visual quality. The noisy image was obtained adding a Gaussian white
noise of standard deviation 40. From top to bottom and left to right: original, noisy, DCT sliding
window, BLS-GSM, NL-means, K-SVD, BM3D and Non-local Bayes.
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